Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    Value of $$\underset { x\rightarrow 0 }{ lim } \dfrac { \sqrt [ 3 ]{ 1+\tan { x }  } -\sqrt [ 3 ]{ 1-\tan { x }  }  }{ x } $$ is

  • Question 2
    1 / -0

    $$\underset { x\rightarrow 0 }{ Lt } (1+sin\quad x)^{ cot\quad x }=$$ 

  • Question 3
    1 / -0

    $$\underset { x\rightarrow 0 }{ lim } { \left( cosecx \right)  }^{ \dfrac { 1 }{ logx }  }$$ is equal to

  • Question 4
    1 / -0

    $$\underset { x\rightarrow 0 }{ lim } \dfrac { 1 }{ { e }^{ 2 } } tan\left( \dfrac { \pi  }{ 4 } +x \right) ^{ 1/x }$$

  • Question 5
    1 / -0

    If $$cosy=xcos(a+y)and\quad \cfrac { dy }{ dx } =\cfrac { k }{ 1+{ x }^{ 2 }-2xcosa } $$ then find value of k?

  • Question 6
    1 / -0

    $$\underset { x\rightarrow 0 }{ lim } \left( \dfrac { 1+tanx }{ 1+sinx }  \right) ^{ cosecx }$$ is equal to

  • Question 7
    1 / -0

    $$\lim_{x\rightarrow 1}\dfrac {1+\sin \pi\left(\dfrac {3x}{1+x^{2}}\right)}{1+\cos \pi x}$$ is equal to

  • Question 8
    1 / -0

    $$lim_{x \to 0^-} \dfrac{x([x]+ \mid x \mid )sin[x]}{\mid x \mid}$$ is equal to

  • Question 9
    1 / -0

    $$\lim _ { x \rightarrow \frac { \pi } { 2 } } \left( \frac { 1 + \cos x } { 1 - \cos x } \right) ^ { \sec x } =$$

  • Question 10
    1 / -0

    The value of $$\displaystyle \lim _{ x\rightarrow \infty } (|x^{2}|+x)\log{(x\cot^{-1}{x})}$$ is :

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now