Self Studies

Mathematical Reasoning Test - 19

Result Self Studies

Mathematical Reasoning Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The contrapositive of $$p \rightarrow (\sim q \rightarrow \sim r)$$ is 
    Solution
    The contrapositive of $$p \rightarrow (\sim q \rightarrow \sim r)$$ is
    $$\equiv   \sim (\sim q \rightarrow \sim r) \rightarrow \sim p$$
    $$\equiv   \sim(q \vee \sim r) \to \sim p$$
    $$\equiv    (\sim q \wedge r) \to \sim p$$
  • Question 2
    1 / -0
    Negation of $$\displaystyle q \vee \sim \left ( p\wedge r \right )$$ is
    Solution
    $$\displaystyle \sim \left ( q\vee \sim \left ( p\wedge r \right )

    \right ) \equiv \sim q\wedge \left ( \sim \left ( \sim (p\wedge r \right )

    \right ) \equiv \sim q\wedge \left ( p\wedge r \right )$$
  • Question 3
    1 / -0
    Find the truth value of the compound statement, 4 is the first composite number and $$2+5=7$$.
    Solution
    The given statement is True, as $$ 4$$ is the first composite number. Also $$ 2 + 5 = 7 $$
  • Question 4
    1 / -0
    The negation of the statement "$$2 + 3 = 5$$" and "$$8 < 10$$" is
    Solution
    Take $$p:2+3=5$$ and $$q:8<10$$

    So the given conjunction is $$p\wedge q$$

    Now $$\sim p:2+3\neq 5$$ and $$\sim q:8\nless 10$$

    Now Negation of the given conjunction $$p\wedge q$$ is $$\sim \left( p\wedge q \right) $$

    $$\sim \left( p\wedge q \right) :2+3\neq 5$$ or $$8\nless 10$$
  • Question 5
    1 / -0
    Find the quantifier which best describes the variable of the open sentence $$x^2+2\ge0$$
    Solution
    An universal quantifier is a symbol or a logic to denote that the statement is true for all values under the scope.

    We know that $$ x^2 $$ is always $$ \ge 0 $$
    Hence, $$ x^2 + 2 \ge 0 $$ holds true for all values of $$ x $$.

    Thus, the quantifier to describe the variable of the given sentence is universal.
  • Question 6
    1 / -0
    What is the truth value of the statement 'Two is an odd number iff 2 is a root of $$x^2+2=0$$'?
    Solution
    Both the statements are false as Two is not an odd number and $$ 2 $$ is not the root of $$ x^2 + 2 = 0 $$

    We know that two False statements together make a True statement., Hence, truth value of the given statement is True.
  • Question 7
    1 / -0
    The negative of the statement "If a number is divisible by 15 then it is divisible by 5 or 3"
    Solution
    Let $$p, q, r$$ be three statements defined as

    $$p$$ : a number N is divisible by 15

    $$q$$ : a number N is divisible by 5

    $$r$$ :a number N is divisible by 3

    Here given statement is $$p\rightarrow (q\vee r)$$

    Here negative of above statement is 

    $$\sim (p \rightarrow (q \vee r)) $$

    $$=\sim [(\sim p) \vee (q \vee r)] $$         ($$\because p\rightarrow q=\sim p \vee q$$)

    $$= \sim (\sim p) \wedge (\sim (q \vee r)$$

    $$= p \wedge (\sim q \wedge \sim r)$$         ($$\because \sim (\sim p)=p, \sim (p\vee q=\sim p \wedge \sim q$$)

    i.e. a number is divisible by 15 and it is not divisible by 5 and 3.
  • Question 8
    1 / -0
    The inverse of the statement $$(p \wedge \sim q)  \rightarrow r$$ is
    Solution
    $$\textbf{Step-1: Apply the concept of logical reasoning. }$$
                     $$\text{We have,}$$
                     $$(p \wedge \sim q)  \rightarrow r$$
                      $$\therefore$$  $$\text{The inverse of the statement}$$ $$(p \wedge \sim q)  \rightarrow r$$ $$\text{is,}$$
                     $$\equiv \sim (p \wedge \sim q)  \rightarrow \sim r \equiv (\sim p \vee \sim (\sim q)) \to \sim r$$
                     $$\equiv (\sim p \vee q) \to \sim r$$

    $$\textbf{Hence, option C}$$
  • Question 9
    1 / -0
    The contrapositive of $$\sim p \rightarrow ( q \rightarrow \sim r)$$ is
    Solution
    The contrapositive of $$\sim p \rightarrow ( q \rightarrow \sim r)$$ is
    $$\equiv \sim ( q \rightarrow \sim r) \rightarrow \sim (\sim p )$$
    $$\equiv \sim (\sim q \vee \sim r) \rightarrow p \equiv (q \wedge r) \rightarrow p $$
  • Question 10
    1 / -0
    Let $$S$$ be non-empty subset of $$R$$ then consider the following statement
     "Every number $$\displaystyle x\: \epsilon \: S $$ is an even number."
    Negation of the statement will be
    Solution
    The given statement implies $$x$$ in the set $$S$$  is always even. The negation of this means there exists $$x$$ in $$S$$ which is not even, or which is odd.
    So, option $$D$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now