Self Studies

Statistics Test - 10

Result Self Studies

Statistics Test - 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$5$$ students of a class have an average height $$150\ cm$$ and variance $$18\ cm^{2}$$. A new student, whose height is $$156\ cm$$, joined them. The variance (in $$cm^{2})$$ of the height of these six students is
    Solution
    Given $$\bar {x} = \dfrac {\sum x_{i}}{5} = 150$$
    $$\Rightarrow \displaystyle \sum_{i = 1}^{5} x_{i} = 750 .... (i)$$
    $$\sigma^2=18$$
    $$\dfrac {\sum x_{i}^{2}}{5} - (\bar {x})^{2} = 18$$
    $$\dfrac {\sum x_{i}^{2}}{5} - (150)^{2} = 18$$
    $$\sum x_{i}^{2} = 112590 ..... (ii)$$
    Given height of new student
    $$x_{6} = 156$$
    Now, $$\bar {x}_{new} = \dfrac {\displaystyle \sum_{i = 1}^{5}x_{i}}{6} = \dfrac {750 + 156}{6} = 151$$
    Also, $$\sigma_{new}^2= \dfrac {\displaystyle \sum_{i = 1}^{5}x_{i}^{2}}{6} - (\overline {x}_{new})^{2}$$
    $$= \dfrac {112590 + (156)^{2}}{6} - (151)^{2}$$
    $$= 22821 - 22801 = 20$$.
  • Question 2
    1 / -0
    If the mean of the data : $$7, 8, 9, 7, 8, 7, \lambda, 8$$ is $$8$$, then the variance of this data is
    Solution
    Mean of the date $$7, 8, 9, 7, 8, 7, \lambda, 8$$ is $$8$$
    $$\therefore M=\dfrac{7+8+9+7+8+7+\lambda+8}{8}=8$$
    $$\Rightarrow \dfrac{54+\lambda}{8}=8$$
    $$\Rightarrow \lambda =10$$
    Now, variance $${\sigma}^{2}$$ is the average of squared difference from mean
    So, $${\sigma}^{2}=\dfrac{(7-8)^{2}+(8-8)^{2}+(9-8)^{2}+(7-8)^{2}+(8-8)^{2}+(7-8)^{2}+(10 - 8)^{2}+(8-8)^{2}}{8}$$
                $$=\dfrac{1+0+1+1+0+1+4+0}{8}=\dfrac{8}{8}=1$$
    Hence, the variance is $$1$$.
  • Question 3
    1 / -0
    Let the observations $$x_i(1\leq i \leq 10)$$ satisfy the equations, $$\displaystyle\sum^{10}_{i=1}(x_i-5)=10$$ and $$\displaystyle\sum^{10}_{i=1}(x_i-5)^2=40$$. If $$\mu$$ and $$\lambda$$ are the mean and the variance of the observations, $$x_1-3, x_2-3, ....., x_{10}-3$$, then the ordered pair $$(\mu, \lambda)$$ is equal to?
    Solution
    $$\displaystyle\sum_{i = 1}^{10} (x_i - 5) = 10$$

    $$\displaystyle\Rightarrow \sum_{i = 1}^{10} (x_i -50) = 10$$

    $$\displaystyle\Rightarrow \sum_{i = 1}^{10} x_i = 60$$

    $$\displaystyle\sum_{i = 1}^{10} (x_i - 5)^2 = 40$$

    $$\displaystyle\Rightarrow \sum_{i = 1}^{10} (x_i^2 + 25 - 10 x_i) = 40$$

    $$\displaystyle\Rightarrow \sum_{i = 1}^{10} x_i^2 + 250 - 10 \times 60 = 40$$

    $$\displaystyle\sum_{i = 1}^{10} x_i^2 = 390$$

    $$i = \dfrac{1}{N} \sum(x_i - 3)^2 = \left(\dfrac{1}{N} \sum(x_i - 3) \right)^2$$

    $$= \dfrac{\sum (x_i^2 + 9 - 6 x_i)}{10} - \left(\dfrac{1}{10} (\sum x_i - 30)\right)^2$$

    Mean $$= \mu = \displaystyle\dfrac{\sum_{i = 1}^{10} (x_i - 3)}{N}$$

    $$= \dfrac{\sum_{i = 1}^{10} x _i - 30}{10} $$         $$\{\sum_{i = 1}^{10} x_i = 60\}$$

    $$= \dfrac{60 - 30}{10}$$

    $$= \dfrac{30}{10}$$

    $$ = 3$$

    So   $$\mu = 3, \, \lambda = 3$$

    $$\therefore$$ $$\boxed{(\mu, \lambda)\equiv(3, 3)}....Answer$$
  • Question 4
    1 / -0
    A student scores the following marks in five test: $$45, 54, 41, 57, 43$$. His score is not known for the sixth test. If the mean score is 48 in the six tests, then the standard deviation of the marks in six test is 
    Solution
    Let $$x$$ be the $$6^{th}$$ observation
    $$\Rightarrow 45 + 54 + 41 + 57 + 43 + x = 48 \times 6 = 288$$
    $$\Rightarrow x = 48$$
    Variance $$= \left(\dfrac{\sum x_i^2}{6} - (\bar{X})^2\right)$$
    $$\Rightarrow$$ variance $$=\dfrac{14024}{6} - (48)^2$$
    $$=\dfrac{100}{3}$$
    $$\Rightarrow$$ standard deviation $$=\dfrac{10}{\sqrt{3}}$$
  • Question 5
    1 / -0
    The mean and variance of $$20$$ observations are found to be $$10$$ and $$4$$, respectively. On rechecking, it was found that an observation $$9$$ was incorrect and the correct observation was $$11$$. Then the correct variabce is:
    Solution
    $$\dfrac{\sum x_i}{20} = 10 \Rightarrow \sum x_i  = 200$$

    $$\dfrac{\sum x_{i}^2}{20} - 100 = 4$$

    $$\sum x_i^2 = 104 \times 20$$
    $$=2080$$

    Actual mean $$= \dfrac{200 - 9 + 11}{20}$$

    $$= \dfrac{202}{20}$$

    Variance $$= \dfrac{2080 - 81 + 121}{20} - \left(\dfrac{202}{20} \right)^2$$

    $$= \dfrac{2120}{20} - (10.1)^2$$

    $$ = 106 - 102.01$$

    $$= 3.99$$
  • Question 6
    1 / -0
    If the data $$x_1, x_2, .., x_{10}$$ is such that the mean of first four of these is $$11$$, the mean of the remaining six is $$16$$ and the sum of square of all of these is $$2,000$$; then the standard deviation of this data is?
    Solution
    $$x_1+...+x_4=44$$
    $$x_5+.....+x_{10}=96$$
    $$\vec{x}=14, \displaystyle\sum x_i=140$$
    Variance $$=\dfrac{\displaystyle\sum x^2_i}{n}=\vec{x^2}=4$$
    Standard deviation $$=2$$.
  • Question 7
    1 / -0
    For two data sets, each of size $$ 5$$, the variances are given to be $$4$$ and $$5$$  and the corresponding means are given to be $$2$$ and $$4,$$ respectively. The variance of the combined data set is 
    Solution
    $$\sigma_{\mathrm{x}}^{2}=4$$
    $$\sigma_{\mathrm{y}}^{2}=5$$
    $$\overline{\mathrm{x}}=2$$
    $$\overline{\mathrm{y}}=4$$
    $$\displaystyle \frac{\Sigma \mathrm{x}_{\mathrm{i}}}{5}=2, \Sigma \mathrm{x}_{\mathrm{i}}=10;\Sigma \mathrm{y}_{\mathrm{i}}=20$$
    $$
    \sigma_{\mathrm{x}}^{2}=(\frac{1}{5}\Sigma \mathrm{x}_{\mathrm{i}}^{2})-(\overline{x})^{2}=\frac{1}{5}(\Sigma \mathrm{x}_{1}^{2})-4
    $$
    $$\sigma_{\mathrm{y}}^{2}=(\frac{1}{5}\Sigma \mathrm{y}_{\mathrm{i}}^{2})-(\overline{y})^{2}=\frac{1}{5}(\Sigma \mathrm{y}_{1}^{2})-4$$
    $$
    \Sigma \mathrm{x}_{\mathrm{i}}^{2}=40
    $$
    $$
    \Sigma \mathrm{y}_{\mathrm{i}}^{2}=105
    $$
    $$\sigma_{\mathrm{z}}^{2}=\displaystyle \frac{1}{10}(\Sigma \mathrm{x}_{\mathrm{i}}^{2}+\Sigma \mathrm{y}_{\mathrm{i}}^{2})-(\frac{\overline{\mathrm{x}}+\overline{\mathrm{y}}}{2})=\frac{1}{10}(40+105)-9=\frac{145-90}{10}=\frac{55}{10}=\frac{11}{2}$$
  • Question 8
    1 / -0
    The mean and the standard deviation (s.d) of 10 observations are 20 and 2 respectively. Each of these 10 observations is multiplied by $$p$$ and then reduced by $$q$$, where $$p \neq 0$$ and $$q  \neq 0$$. If the new mean and new s.d. become half of their original values, then $$q$$ is equal to:
    Solution

    $${\textbf{Step -1: Let initial mean}}$$ $${\mathbf{\left( {\overline x } \right)}}$$ $${\textbf{and standard deviation}}$$ $${\mathbf{\left( {{\sigma _1}} \right)}}$$$${\textbf{of 10 observation are 20 and 2 respectively.}}$$  

                   $${\text{Now, each of these observations is multiplied by p and reduced by q.}}$$

                   $${\text{Thus, The new mean}}$$ $$ = \overline {{x_1}}  = p\overline x  - q \ldots \left( 1 \right)$$

                   $${\text{Also, it is given that the new mean is half of the original mean}}{\text{.}}$$

                   $$ \Rightarrow \overline {{x_1}}  = \dfrac{1}{2}\overline x  = \dfrac{1}{2} \times 20$$

                   $$ \Rightarrow \overline {{x_1}}  = 10$$

                   $${\text{Substitute this value of new mean in equation 1.}}$$

                   $$ \Rightarrow 10 = p\left( {20} \right) - q$$

                   $$ \Rightarrow 20p - q = 10 \ldots \left( 2 \right)$$

    $${\textbf{Step -2: Find the value of p and q using the standard deviation.}}$$

                   $${\text{New standard deviation is given by,}}$$

                  $${\sigma _2} = \left| p \right|{\sigma _1} \ldots \left( 3 \right)$$

                  $${\text{As it will not be affected by subtraction of q from each observation.}}$$

                  $${\text{It is given that new standard deviation is half of the original.}}$$

                  $$ \Rightarrow {\sigma _2} = \dfrac{1}{2}{\sigma _1} = \dfrac{1}{2} \times 2 = 1$$

                  $${\text{Substitute this value in equation 3.}}$$

                 $$ \Rightarrow \left| p \right| \times 2 = 1$$

                 $$ \Rightarrow p =  \pm \dfrac{1}{2}$$

    $${\textbf{Step -3: Find the value of q using p.}}$$

                    $${\text{If }}$$ $$p = \dfrac{1}{2}$$

                    $${\text{Then from equation 2 we have,}}$$

                    $$ \Rightarrow 20 \times \dfrac{1}{2} - q = 10$$

                    $$ \Rightarrow 10 - 10 = q$$

                    $$\Rightarrow q = 0$$    $$[\textbf{Rejected, as q}\neq 0]$$

                    $${\text{If }}$$ $$p =  - \dfrac{1}{2}$$

                    $${\text{Using equation 2, we have,}}$$

                    $$ \Rightarrow 20 \times \left( { - \dfrac{1}{2}} \right) - q = 10$$

                    $$ \Rightarrow q =  - 10 - 10$$

                    $$ \Rightarrow q =  - 20$$

    $${\textbf{Hence, option C. i.e.}}{\mathbf{\left ( -20 \right )}} {\textbf{ is the correct answer.}}$$

     

  • Question 9
    1 / -0
    If both the mean and the standard deviation of $$50$$ observations $${ x }_{ 1 },{ x }_{ 2 },......,{ x }_{ 50 }$$ are equal to $$16$$, then the mean of $${ \left( { x }_{ 1 }-4 \right)  }^{ 2 },{ \left( { x }_{ 2 }-4 \right)  }^{ 2 },.....{ \left( { x }_{ 50 }-4 \right)  }^{ 2 }$$ is:
    Solution
    Mean $$\quad \left( \mu  \right) =\cfrac { \sum { { x }_{ i } }  }{ 50 } =16$$
    standard deviation $$\left( \sigma  \right) =\sqrt { \cfrac { \sum { { x }_{ i }^{ 2 } }  }{ 50 } -{ \left( \mu  \right)  }^{ 2 } } =16\Rightarrow \left( 256 \right) \times 2=\cfrac { \sum { { x }_{ i }^{ 2 } }  }{ 50 } $$
    New mean
    $$=\cfrac { \sum { ({ x }_{ i }-4)^{ 2 } }  }{ 50 } =\cfrac { \sum { { x }_{ i }^{ 2 } } +16\times 50-8\sum { { x }_{ i }^{  } }  }{ 50 } =\left( 256 \right) \times 2=16-8\times 16=400$$
  • Question 10
    1 / -0
    If $$\displaystyle \sum_{i = 1}^{9}(x_{i} - 5) = 9$$ and $$\displaystyle \sum_{i = 1}^{9}(x_{i} - 5)^{2} = 45$$, then the standard deviation of the $$9$$ items $$x_{1}, x_{2}, ...., x_{9}$$ is
    Solution
    $$\sum_{i=1}{9}(x_i-5)=9$$
    $$\therefore \sum_{i=1}{9}x_i-45=9$$
    $$\therefore \sum_{i=1}{9}x_i=54$$
    Hence, mean of $$x_i$$'s $$=$$ $$\mu=\dfrac{\sum_{i=1}{9}x_i}{9}=6$$
    Also,
    $$\sum_{i=1}{9}(x_i-5)^2=45$$
    $$\therefore\sum_{i=1}{9}(x_i^2-10x_i+25)=45$$
    $$\therefore\sum_{i=1}{9}x_i^2-10\sum_{i=1}{9}x_i+225=45$$
    $$\therefore\sum_{i=1}{9}x_i^2-10\times 54+225=45$$
    $$\therefore\sum_{i=1}{9}x_i^2- 540+225=45$$
    $$\therefore\sum_{i=1}{9}x_i^2=360$$
    $$\therefore \dfrac{\sum_{i=1}-{9}x_i^2}{9}=40$$
    Now, Standard deviation of $$x_i$$'s $$=\sqrt{\dfrac{\sum_{i=1}-{9}x_i^2}{9}-\mu^2}$$
    $$=\sqrt{40-6^2}$$
    $$=\sqrt{40-36}$$
    $$=2$$
    This is the required answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now