$${\textbf{Step -1: Let initial mean}}$$ $${\mathbf{\left( {\overline x } \right)}}$$ $${\textbf{and standard deviation}}$$ $${\mathbf{\left( {{\sigma _1}} \right)}}$$$${\textbf{of 10
observation are 20 and 2 respectively.}}$$
$${\text{Now, each of these
observations is multiplied by p and reduced by q.}}$$
$${\text{Thus, The new mean}}$$
$$ = \overline {{x_1}} = p\overline x - q \ldots \left( 1 \right)$$
$${\text{Also, it is given
that the new mean is half of the original mean}}{\text{.}}$$
$$ \Rightarrow
\overline {{x_1}} = \dfrac{1}{2}\overline x = \dfrac{1}{2} \times 20$$
$$ \Rightarrow
\overline {{x_1}} = 10$$
$${\text{Substitute this value of new mean in equation 1.}}$$
$$ \Rightarrow 10 = p\left( {20} \right) - q$$
$$ \Rightarrow 20p - q = 10
\ldots \left( 2 \right)$$
$${\textbf{Step -2: Find the value of p and q using the
standard deviation.}}$$
$${\text{New standard
deviation is given by,}}$$
$${\sigma _2} = \left| p
\right|{\sigma _1} \ldots \left( 3 \right)$$
$${\text{As it will not be
affected by subtraction of q from each observation.}}$$
$${\text{It is given that
new standard deviation is half of the original.}}$$
$$ \Rightarrow {\sigma _2} =
\dfrac{1}{2}{\sigma _1} = \dfrac{1}{2} \times 2 = 1$$
$${\text{Substitute this
value in equation 3.}}$$
$$ \Rightarrow \left| p
\right| \times 2 = 1$$
$$ \Rightarrow p = \pm \dfrac{1}{2}$$
$${\textbf{Step -3: Find the value of q using p.}}$$
$${\text{If }}$$ $$p = \dfrac{1}{2}$$
$${\text{Then from equation
2 we have,}}$$
$$ \Rightarrow 20 \times \dfrac{1}{2}
- q = 10$$
$$ \Rightarrow 10 - 10 = q$$
$$\Rightarrow q = 0$$ $$[\textbf{Rejected, as q}\neq 0]$$
$${\text{If }}$$ $$p = - \dfrac{1}{2}$$
$${\text{Using equation 2, we
have,}}$$
$$ \Rightarrow 20 \times
\left( { - \dfrac{1}{2}} \right) - q = 10$$
$$ \Rightarrow q = - 10 - 10$$
$$ \Rightarrow q = - 20$$
$${\textbf{Hence, option C. i.e.}}{\mathbf{\left ( -20 \right )}} {\textbf{ is the correct answer.}}$$