Self Studies

Statistics Test - 14

Result Self Studies

Statistics Test - 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Mode is
    Solution
    The value which occurs the maximum number of times in the dataset or which has the highest frequency is the mode of the dataset.
  • Question 2
    1 / -0
    What is the average of squares of consecutive odd numbers between $$1$$ and $$13 $$?
    Solution
    The consecutive odd numbers from $$1$$ to $$13 = 3, 5, 7, 9, 11$$
    Thus required average = $$\displaystyle \frac{3^{2}+5^{2}+7^{2}+9^{2}+11^{2}}{5}=\frac{9+25+49+81+121}{5}=\frac{285}{5}=57$$
  • Question 3
    1 / -0
    If the coefficient of variation and standard deviation of a distribution are 50% and 20 respectively, then its mean is
    Solution
    Given $$\sigma = 20$$, coefficient of variation $$=50$$ %
    We know coefficient of variation $$=\cfrac{\sigma }{\bar{x}}\times 100=50$$
    $$\Rightarrow \bar{x} = 2\times \sigma = 40$$
  • Question 4
    1 / -0
    The variance of first n natural numbers is
    Solution

    $$\textbf{Step - 1: Finding the mean}$$

                       $$\text{The } n \text{ natural numbers are } 1, 2, 3,..., n$$

                       $$\text{The Sum of } n \text{ natural number is } \dfrac{{n(n+1)}}{{2}}$$

                       $$\text{Mean} = \dfrac{ \dfrac{{n(n+1)}}{{2}}}{n} = \dfrac{{n+1}}{{2}}$$

    $$\textbf{Step - 2: Finding the Variance}$$

                       $$\text{Variance} = \dfrac{{\sum(x_i)^2}}{{n}} - (\text{Mean})^2$$

                       $$ \sum(x_i)^2 = \dfrac{{1^2 +2^2 + ...+ n^2}}{{n}}$$

                       $$\text{Since } 1^2 +2^2 + ...+ n^2 = \dfrac{{n(n+1)(2n+1)}}{{6}}$$

                       $$\dfrac{{\sum(x_i)^2}}{{n}} = \dfrac{{n(n+1)(2n+1)}}{{6n}}$$

                       $$\text{Variance} =  \dfrac{{n(n+1)(2n+1)}}{{6n}} - (\dfrac{{n+1}}{{2}})^2$$

                       $$=\dfrac{{(n+1)}}{{2}}\times(\dfrac{{2n+1}}{{3}}-\dfrac{{n+1}}{{2}})$$

                       $$= \dfrac{{(n+1)}}{{2}}(\dfrac{{4n+2-3n-3}}{{6}})$$

                       $$=\dfrac{{n+1}}{{2}}\times\dfrac{{n-1}}{{6}}$$

                       $$= \dfrac{{n^2 - 1}}{{12}}$$

    $${\textbf{Hence, the correct answer is Option B}.}$$

  • Question 5
    1 / -0
    Which one of the following statements is correct?
    Solution
    We know that
    $$Variance=\dfrac{\sum{fD^2}}{N}$$
    $$Standard\ Deviation (SD)=\sqrt{Variance}$$

    Hence, The Standard deviation for a given distribution is the square root of the variance.

    Hence, this is the answer.
  • Question 6
    1 / -0
    The formula of standard deviation of a grouped frequency distribution is
    Solution
    Formula to calculate Standard deviation of a grouped frequency distribution is $$ \sqrt { \frac { \sum { { (x }_{ i }-\bar { x } )^{ 2 } } { f }_{ i } }{ N }  } $$
    where $$ f_1 $$ is the frequency of observation $$ x_i $$ ;
    $$ bar {x} $$ is the mean of the frequency distribution
    $$ N $$ is the sum of all frequencies
  • Question 7
    1 / -0
    Variance of the distribution $$73, 77, 81, 85,..., 113$$ is
    Solution
    $$73,77,81...113$$ are in A.P

    where $$a=73,d=4$$

    $$\therefore 113=a+\left( n-1 \right) d\Rightarrow 113=73+\left( n-1 \right) 4\\ \Rightarrow 40=\left( n-1 \right) 4\Rightarrow 10=n-1\Rightarrow n=11$$

    $$\displaystyle S=\frac { 11 }{ 2 } \left( 73+113 \right) =1023$$

    $$\displaystyle \overline { x } =\frac { 1023 }{ 11 } =93$$

    Therefore variance $$\displaystyle \frac { \sum { { \left( x-\overline { x }  \right)  }^{ 2 } }  }{ N } =161$$
  • Question 8
    1 / -0
    The median of the following data $$46, 64, 87, 41, 58, 77, 35, 90, 55, 33, 92$$ is ,
    Solution
    Arrange the given data in ascending order.
    We have, $$33, 35, 41, 46, 55, 58, 64, 77, 87, 90$$ and $$92.$$
    The sixth entry is $$58.$$
    Median is $$58.$$
  • Question 9
    1 / -0
    $$\displaystyle \sum_{i=l}^{n}(x_{i}-a)=$$
    Solution
    $$\sum_{i=1}^{n} (x_i-a)$$
    $$=(x_1-a)+(x_2-a)+ . . .  + (x_n+a)$$
    $$=(x_1+x_2+ . . . +x_n)+(a+a + .  . . $$upto n term) 
    $$=\sum_{i=1}^{n}x_i - na$$
  • Question 10
    1 / -0
    The difference between the maximum and the minimum observation in the data is
    Solution
    Range =maximum value-minimum value
    Hence range is the difference between the maximum and the minimum  observation.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now