Self Studies

Statistics Test - 18

Result Self Studies

Statistics Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The variance of the following data is :
    Length of rod$$72.0-73.9$$$$74.0-75.9$$$$76.0-77.9$$$$78.0-79.9$$$$80.0-81.9$$
    No. of Rods$$7$$$$31$$$$42$$$$54$$$$33$$
    Solution
    $$\bar { x } =\cfrac { \sum { Fx }  }{ \sum { F }  } =\cfrac{13000.65}{167}=77.84$$
    $${\sigma}^{2}=\cfrac { \sum { F{ ( }x-\bar { x } )^{ 2 } }  }{ \sum { F }  }=\cfrac{672.67}{167} =4.028$$
    $$\sigma=2$$

  • Question 2
    1 / -0
    Mean of $$40$$ observations was given as $$160$$.It was detected that $$125$$ was misread as $$160$$. Find the correct mean.
    Solution
    Formula used:
    $$Arithmetic\ mean= \dfrac{Sum\ of\ given\ numbers}{Total\ numbers}$$
    Sine, number of observations$$,n=40$$
    Mean$$=160$$ (initial wrong mean)
    Incorrected sum$$=n \times u=40 \times 160=6400$$
    Now $$125$$ was read as $$165$$, so
    Corrected sum $$=6400-165+125=6360$$
    $$\therefore$$ Corrected mean $$=\dfrac{6360}{40} =159$$
  • Question 3
    1 / -0
    Find variance for following data:
    Class interval$$30-40$$$$40-50$$$$50-60$$$$60-70$$$$70-80$$$$80-90$$$$90-100$$
    Frequency$$3$$$$7$$$$12$$$$15$$$$8$$$$3$$$$2$$
    Solution
    $$\bar { x } =\cfrac { \sum { Fx }  }{ \sum { F }  } =\cfrac{3100}{50}=62$$
    $${\sigma}^{2}=\cfrac { \sum { F{ ( }x-\bar { x } )^{ 2 } }  }{ \sum { F }  }=\cfrac{10050}{50}=201$$
    $$\sigma=14.17$$

  • Question 4
    1 / -0
    Find variance for the following data:
    Wages125-175175-225225-275275-325325-375375-425425-475475-525525-575
    Workers222191434611
    Solution
    $$\Rightarrow$$  Let $$325-375$$ be middle class.
    $$\therefore$$   $$A=\dfrac{325+375}{2}=350$$
    $$\Rightarrow$$ $$h=375-325=50$$
    $$Wages$$ $$Worker$$
    $$f_i$$ 
    $$Mid-point$$
    $$x_i$$ 
    $$y_i=\dfrac{x_i -A}{h}$$ $$y_i^2$$ $$f_iy_i$$ $$f_iy_i^2$$
    $$125-175$$ $$2$$ $$150$$ $$-4$$ $$16$$ $$-8$$ $$32$$ 
    $$175-225$$ $$22$$ $$200$$ $$-3$$ $$9$$ $$-66$$ $$198$$ 
    $$225-275$$ $$19$$ $$250$$ $$-2$$ $$4$$ $$-38$$ $$76$$ 
    $$275-325$$ $$14$$ $$300$$ $$-1$$ $$1$$ $$-14$$ $$14$$ 
    $$325-375$$ $$3$$ $$350$$ $$0$$ $$0$$ $$0$$ $$0$$ 
    $$375-425$$ $$4$$ $$400$$ $$1$$ $$1$$ $$4$$ $$4$$ 
    $$425-475$$ $$6$$ $$450$$ $$2$$ $$4$$ $$12$$ $$24$$ 
    $$475-525$$ $$1$$$$500$$ $$3$$ $$9$$ $$3$$ $$9$$ 
    $$525-575$$ $$1$$ $$550$$ $$4$$ $$16$$ $$4$$ $$16$$ 
     $$\sum f_i=72$$    $$\sum f_i y_i=-103$$ $$\sum f_i y_i^2$$
    $$=373$$ 
    $$\Rightarrow$$   $$N=72$$  
    $$\Rightarrow$$  $$Variance(\sigma)^2=\dfrac{h^2}{N^2}[N\sum f_iy_i^2-(\sum f_iy_i)^2]$$
                                     $$=\dfrac{(50)^2}{(72)^2}\times \left[72\times 373-(-103)^2\right]$$
                                     $$=\dfrac{2500}{5184}\times [26856-10609]$$
                                     $$=0.482253\times 16247$$
                                     $$=7835.16$$



  • Question 5
    1 / -0
    $${\sigma}^2$$ is  known as 
    Solution
    Variance gives the degree to which the numerical data tend to spread about the value.

    Variance is denoted by $$\sigma^2$$

    Variance is given by $$\dfrac{\sum x^2}{n}-(\dfrac{\sum x}{n})^2$$

    But mean $$\bar x=\dfrac{\sum x}{n}$$

    Therefore, variance is $$\dfrac{\sum x^2}{n}-(\bar x)^2$$

  • Question 6
    1 / -0
    Find the variance of first $$10$$ multiples of $$3$$.
    Solution
    First $$10$$ multiples of $$3$$ are $$3,6,9...30$$.
    This is an A.P.
    $$sum=\dfrac n2 (a+l)= \dfrac {10}{2} \times (3+30)$$
    $$\therefore sum=165$$.
    Mean, $$u=\dfrac {sum}{n}=\dfrac{165}{10}$$.
    Variance, $$\sigma ^2=\dfrac{\sum(x_i ^2)}{n}-u^2$$.
    $$\therefore \sigma ^2=\dfrac{3^2+6^2+...30^2}{10}-{16.5}^2$$.
    $$\therefore \sigma ^2=\dfrac{3\times(1^2+2^2+...10^2)}{10}-{16.5}^2$$.
    $$\therefore \sigma ^2=\dfrac{9\times 10\times (10+1)\times (2\times 10+1)}{6\times 10}-{16.5}^2$$.
    $$\therefore \sigma ^2=346.5-272.25$$
    $$\therefore \sigma ^2=74.25$$
    Ans-Option $$C$$.
  • Question 7
    1 / -0
    Standard Deviation of first n natural numbers.
    Solution


    $$  {\textbf{Step 1: Finding mean}} $$

                   $$  {\text{The first }n\text{ natural numbers are }1,2,3,.....,n.} $$

                   $$  {\text{Their mean, }}\mathop x\limits^\_ {\text{ = }}\dfrac{{\sum x }}{n}{\text{ }} $$

                   $$  {\text{ = }}\dfrac{{1 + 2 + 3 + ....... + n}}{n} $$

                   $$   = \dfrac{{n\left( {n + 1} \right)}}{{2n}} $$

                   $$   = \dfrac{{n + 1}}{2} $$

                   $$  {\text{Sum of the square of the first n natural numbers is }}\sum {{x^2}} {\text{ = }}\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}{\text{ }} $$

    $$  {\textbf{Step 2: Finding standard deviation}} $$

                   $$  {\text{Thus, the standard deviation }}\sigma {\text{ = }}\sqrt {\dfrac{{\sum {{x^2}} }}{n} - {{\left( {\dfrac{{\sum x }}{n}} \right)}^2}}  $$

                   $$  {\text{ = }}\sqrt {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{{6n}} - {{\left( {\dfrac{{n + 1}}{2}} \right)}^2}}  $$

                   $$  {\text{ =  }}\sqrt {\dfrac{{\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} - {{\left( {\dfrac{{n + 1}}{2}} \right)}^2}}  $$

                   $$   = \sqrt {\left( {\dfrac{{n + 1}}{2}} \right)\left[ {\dfrac{{2n + 1}}{3} - \dfrac{{n + 1}}{2}} \right]}  $$

                   $$   = \sqrt {\left( {\dfrac{{n + 1}}{2}} \right)\left[ {\dfrac{{2(2n + 1) - 3(n + 1)}}{6}} \right]}  $$

                   $$   = \sqrt {\left( {\dfrac{{n + 1}}{2}} \right)\left[ {\dfrac{{4n + 2 - 3n - 3}}{6}} \right]}  $$

                   $$   = \sqrt {\left( {\dfrac{{n + 1}}{2}} \right)\left( {\dfrac{{n - 1}}{6}} \right)}  $$

                   $$   = \sqrt {\dfrac{{{n^2} - 1}}{{12}}}  $$

                   $$  {\text{Hence, the S}}{\text{.D}}{\text{. of the first n natural numbers is }}\sqrt {\dfrac{{{n^2} - 1}}{{12}}}  $$

    $$  {\textbf{ Hence, the correct answer is option B}}{\text{.}} $$

     

  • Question 8
    1 / -0

    Directions For Questions

    Factory$$A$$$$B$$
    Number of Workers$$4000$$$$5000$$
    Mean Wages$$3500$$$$3500$$
    Variance in wages$$64$$$$81$$

    ...view full instructions

    Which factory has more variation in wages?
    Solution
    $$(\sigma _A) ^2=64$$ and $$(\sigma _B) ^2=81$$
    $$\because S.D=\sqrt {\sigma ^2}$$
    $$\therefore S.D_A=8$$ and $$S.D_B=9$$
    Since monthly mean wages in two factories are same, and $$ S.D_A < S.D_B$$.
    Thus, the factory $$B$$ has more variation in wages.
    Ans-Option $$B$$.
  • Question 9
    1 / -0
    Variance of first $$n$$ natural numbers.
    Solution

    $${\textbf{Step  - 1: Finding mean of first n natural numbers}}$$

                        $${\text{We know that, mean of n observations  =  }}\dfrac{{{\text{Sum of n observations}}}}{{\text{n}}}$$

                        $$\therefore {\text{ Mean  =  }}\dfrac{{{\text{1  +  2  +  3  +  }}.....{\text{  +  n}}}}{{\text{n}}}$$

                        $${\text{We know that, sum of first n natural numbers  =  }}\dfrac{{{\text{n}}\left( {{\text{n  +  1}}} \right)}}{{\text{2}}}$$

                        $$ \Rightarrow {\text{ Mean  =  }}\dfrac{{\dfrac{{{\text{n}}\left( {{\text{n  +  1}}} \right)}}{{\text{2}}}}}{{\text{n}}}$$

                        $$ \Rightarrow {\text{ Mean  =  }}\dfrac{{{\text{n  +  1}}}}{{\text{2}}}$$

    $${\textbf{Step  - 2: Calculating variance}}$$

                        $${\text{We know that, variance  =  }}\dfrac{{\sum {{{\text{x}}_{\text{i}}}^{\text{2}}} }}{{\text{n}}}{\text{  -  }}{\left( {{\text{Mean}}} \right)^{\text{2}}}$$

                        $$\therefore {\text{ Variance  =  }}\dfrac{{{{\text{1}}^{\text{2}}}{\text{  +  }}{{\text{2}}^{\text{2}}}{\text{  +  }}{{\text{3}}^{\text{2}}}{\text{  +  }}....{\text{ +   }}{{\text{n}}^{\text{2}}}}}{{\text{n}}}{\text{  -  }}{\left( {\dfrac{{{\text{n  +  1}}}}{{\text{2}}}} \right)^{\text{2}}}$$

                        $${\text{Also, sum of squares of first n natural numbers  =  }}\dfrac{{{\text{n}}\left( {{\text{n  +  1}}} \right)\left( {{\text{2n  +  1}}} \right)}}{{\text{6}}}$$

                        $$ \Rightarrow {\text{ Variance  =  }}\dfrac{{{\text{n}}\left( {{\text{n  +  1}}} \right)\left( {{\text{2n  +  1}}} \right)}}{{{\text{6n}}}}{\text{  -  }}\dfrac{{{{{\text{(n  +  1)}}}^{\text{2}}}}}{{\text{4}}}$$

                        $$ \Rightarrow {\text{ Variance  =  }}\dfrac{{\left( {{\text{n  +  1}}} \right)\left( {{\text{2n  +  1}}} \right)}}{{\text{6}}}{\text{  -  }}\dfrac{{{{{\text{(n  +  1)}}}^{\text{2}}}}}{{\text{4}}}$$

                        $$ \Rightarrow {\text{ Variance  =  }}\dfrac{{{\text{2}}{{\text{n}}^{\text{2}}}{\text{  +  3n  +  1}}}}{{\text{6}}}{\text{  -  }}\dfrac{{{{\text{n}}^{\text{2}}}{\text{  +  2n  +  1}}}}{{\text{4}}}$$

                        $$ \Rightarrow {\text{ Variance  =  }}\dfrac{{{\text{4}}{{\text{n}}^{\text{2}}}{\text{  +  6n  +  2  -  3}}{{\text{n}}^{\text{2}}}{\text{  -  6n  -  3}}}}{{{\text{12}}}}$$

                        $$ \Rightarrow {\text{ Variance  =  }}\dfrac{{{{\text{n}}^{\text{2}}}{\text{  -  1}}}}{{{\text{12}}}}$$

    $$\mathbf{{\text{Thus, the variance of first n natural numbers is }}\dfrac{{{{\text{n}}^{\text{2}}}{\text{  -  1}}}}{{{\text{12}}}}.}$$

  • Question 10
    1 / -0
    Find the Standard Deviation of of first $$10$$ multiples of $$3$$.
    Solution
    First $$10$$ multiples of $$3$$ are $$3,6,9...30$$.
    This is an A.P.
    $$sum=\dfrac n2 (a+l)= \dfrac {10}{2} \times (3+30)$$
    $$\therefore sum=165$$.
    Mean, $$u=\dfrac {sum}{n}=\dfrac{165}{10}$$.
    Variance, $$\sigma ^2=\dfrac{\sum(x_i ^2)}{n}-u^2$$.
    $$\therefore \sigma ^2=\dfrac{3^2+6^2+...30^2}{10}-{16.5}^2$$.
    $$\therefore \sigma ^2=\dfrac{3\times(1^2+2^2+...10^2}{10}-{16.5}^2$$.
    $$\therefore \sigma ^2=\dfrac{9\times 10\times (10+1)\times (2\times 10+1)}{6\times 10}-{16.5}^2$$.
    $$\therefore \sigma ^2=346.5-272.25$$
    $$\therefore \sigma ^2=74.25$$
    Standard Deviation, $$S.D=\sqrt{ \sigma ^2}$$
    $$\therefore S.D=\sqrt{74.25}$$
    Thus, $$S.D=8.61$$
    Ans-Option $$A$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now