Self Studies

Statistics Test - 24

Result Self Studies

Statistics Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The Mean deviation about A.M. of the numbers $$3, 4, 5, 6, 7 $$ is :
    Solution
    Mean deviation is defined as the average of the absolute deviation of the observations from their mean.
    Here, the arithmetic mean of the given observations is $$\dfrac{3 + 4 + 5 + 6 + 7}{5} = 5$$
    Thus, mean deviation = $$\dfrac{|3 - 5| + |4 - 5| + |5 - 5| + |6 - 5| + |7 - 5|}{5} = \dfrac{6}{5} = 1.2$$
    Hence, option 'C' is correct.
  • Question 2
    1 / -0
    The range of the data 25.7, 16.3, 2.8, 21.7, 24.3, 22.7, 24.9 is
    Solution
    The range is the difference between the smallest value and largest value of the data set.
    Given data set is $$25.7,16.3,2.8,21.7,24.3,22.7,24.9$$
    The smallest value in the given data is $$2.8$$ and
    the largest value is $$25.7$$
    Therefore the range is $$25.7-2.8=22.9$$
  • Question 3
    1 / -0
    If the mean of the observations:
    $$x, x + 3, x + 5, x + 7, x + 10$$ is $$9$$, the mean of the last three observations is
    Solution
    Mean of $$x, x + 3, x + 5, x + 7, x + 10 = 9$$
    Sum of the terms $$= 5x + 25$$
    Mean = $$\dfrac{5x+25}{5} =9$$
    $$x +5 =9$$
    $$x =4$$
    Last three observations are $$9,11,14$$
    Mean $$= \dfrac{9+11+14}{3}= 11\dfrac{1}{3}$$
  • Question 4
    1 / -0
    If the standard deviation of $$5, 7, 9$$ and $$11$$ is $$2$$, then the coefficient of variation is?
    Solution
    Coefficient of variation
    $$=\dfrac{standard \ deviation}{arithmetic \ mean}\times 100$$
    But arithmetic mean of the given numbers
    $$\dfrac{5+7+9+11}{4}=8$$
    $$\therefore $$ Coefficient of variation $$=$$ $$\dfrac{2\times 100}{8} = 25$$
  • Question 5
    1 / -0
    The range of the data 7,9,7,5,9,9,18,6,8,9 is:
    Solution
    The range is the difference between the smallest value and largest value of the data set.
    Given data set is $$7,9,7,5,9,9,18,6,8,9$$
    The smallest value in the given data is $$5$$ and
    the largest value is $$18$$
    Therefore the range is $$18-5=13$$
  • Question 6
    1 / -0
    The mean marks (out of $$100$$) of boys and girls in an examination are $$70$$ and $$73$$, respectively. If the mean marks of all the students in that examination is $$71$$, find the ratio of the number of boys to the number of girls.
    Solution
    Let the total number of boys be $$x$$ and the total number of girls br $$y$$.
    Let the sum of the marks of boys be $$a$$ and the sum of the marks of girls be $$b$$.
    Mean marks of boys are $$=70$$
    Mean marks of girls are $$=73$$
    Therefore,
    $$\Rightarrow \dfrac{a}{x}=70$$
    $$\Rightarrow a=70x$$
    and
    $$\Rightarrow \dfrac{b}{y}=73$$
    $$\Rightarrow b=73y$$
    Now, mean marks of all the students is $$71$$
    Therfore,
    $$\Rightarrow \dfrac{sum\ of\ the\ marks\ of\ all\ the\ students}{x+y}=71$$
    $$\Rightarrow sum\ of\ the\ marks\ of\ all\ the\ students=a+b$$
    $$\Rightarrow a+b=70x+73y$$
    Therefore,
    $$\Rightarrow \dfrac{70x+73y}{x+y}=71$$
    $$\Rightarrow 70x+73y=71x+71y$$
    $$\Rightarrow2y=x$$
    $$\Rightarrow \dfrac{x}{y}=\dfrac{2}{1}$$
    $$Hence\ the\ ratio\ is\ 2:1$$
  • Question 7
    1 / -0
    Standard deviation for first 10  natural numbers is
    Solution
    Standard deviation of first $$n$$ natural number is $$\displaystyle =\sqrt{\frac{n^2-1}{12}}=\sqrt{\frac{10^2-1}{12}}=2.87$$  
  • Question 8
    1 / -0
    Let $${ x }_{ 1 },{ x }_{ 2 },.....{ x }_{ n }$$ be $$n$$ observations with mean $$m$$ and standard deviation $$s$$. Then the standard deviation of the observations $$a{ x }_{ 1 },a{ x }_{ 2 },.....a{ x }_{ n }$$, is
    Solution
    $$S.D(ax) = \sqrt{E[ax-a\bar{x}]^2}=\sqrt{E[a(x-\bar{x})^2]}=\sqrt{a^2.E[(x-\bar{x})^2]}=|a|.\sqrt{E[(x-\bar{x})^2]}=|a|.S.D(x)=|a| s$$
  • Question 9
    1 / -0
    Standard deviation for first 10 even natural numbers is
    Solution
    We know standard deviation of first $$n$$ even natural number is $$, \sigma =\sqrt{\cfrac{n^2-1}{3}}$$
    Here $$n =10$$
    $$\therefore \sigma = \sqrt{\cfrac{100-1}{3}}=\sqrt{33}=5.74$$
  • Question 10
    1 / -0
    If a variable $$x$$ takes values $$0,1,2,....n$$ with frequencies proportional to the binomial coefficients $${ _{  }^{ n }{ C } }_{ 0 },{ _{  }^{ n }{ C } }_{ 1 },{ _{  }^{ n }{ C } }_{ 2 },......{ _{  }^{ n }{ C } }_{ n }$$, then mean of distribution is 
    Solution
    Here,  $$\displaystyle \mu1 '=\frac{\sum r\frac{n}{r}^{n-1}C_{r-1}}{\sum ^{n}C_{r}}$$ 
    $$\displaystyle =\frac{n.2^{n-1}}{2^{n}}=\frac{n}{2}$$
    and 
    $$\displaystyle \mu 2'=\frac{1}{2^{n}}\sum_{0}^{n}\left\{ \left ( r-1 \right )+r \right
    \}^{n}C_{r}$$  
    $$\displaystyle=\frac{1}{2^{n}}\sum_{0}^{n}r\left ( r-1 \right )^{n}C_{r}+\frac{n}{2}$$ 
    $$\displaystyle =\frac{1}{2^{n}}\sum_{0}^{n}r\left ( r-1 \right )\frac{n\left ( n-1 \right )}{r\left ( r-1 \right )}^{n-2}C_{r-2}+\frac{n}{2}$$ 
    $$\displaystyle =\frac{n\left ( n-1 \right)}{2^{n}}.2^{n-2}+\frac{n}{2}$$ 
    $$\displaystyle =\frac{n\left ( n-1 \right )}{4}+\frac{n}{2}$$ 
    $$\therefore$$ Variance $$\displaystyle \sigma^2=\mu 2'-\left (\mu 1' \right )^{2}$$ $$\displaystyle =\frac{n\left ( n-1 \right )}{4}+\frac{n}{2}-\left ( \frac{n}{2} \right )^{2}=\frac{n}{4}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now