Self Studies

Statistics Test - 25

Result Self Studies

Statistics Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the mean deviation about mean $$1,1+d,1+2d,....1+100d$$ from their mean is $$255$$, then the $$d$$ is equal to 
    Solution
    Clearly given observation is in A.P, and have $$101$$ terms.
    $$\therefore$$ Mean $$\displaystyle =\frac{1}{2}\left \{ 1+1+100d\right \}=1+50d$$
    And thus mean deviation about mean $$\displaystyle =\frac{1}{101}\sum \left | x-\bar{x} \right |$$ $$\displaystyle =\frac{1}{101}.2d\left ( 1+2+3\cdots +50 \right )$$ $$\displaystyle =\frac{50\left ( 51 \right )d}{101}=255$$ (given)
    $$\Rightarrow d = 10.1$$
  • Question 2
    1 / -0
    The mean deviation of the series $$a,a+d,a+2d+......,a+(2n-1)d,a+2nd$$ about the mean is
    Solution
    Mean $$\displaystyle\overline{x}=\frac{(a)+(a+d)+(a+2d)+...+(a+2nd)}{2n+1}$$
    where $$\displaystyle\overline{x}=\frac{\sum x_i}{n}$$
    Then, $$\displaystyle\frac{\frac{2n+1}{2}(a+a+2nd)}{2n+1}$$


    From an A.P. $$\displaystyle S_n = \frac{n}{2} (a+l)$$   which gives $$\overline{x} = a+nd$$
    The series being a,a+d,a+2d,...,a+(n-1)d,a+nd,a+(n+1)d,...,a+2nd
    Mean deviation from the mean 
    = $$\displaystyle\frac{1}{N} \sum f_i [x_i- \overline{x}]$$
    = $$\displaystyle\frac{1}{2n+1} \sum [x_i -a-nd]$$
    = $$\displaystyle\frac{1}{2n+1} [nd+(n-1)d+(n-2)d+...+d+0+d+...+nd]$$
    = $$\displaystyle\frac{2d}{2n+1} [n+(n-1)+(n-2)+...1]$$
    = $$\displaystyle\frac{2d}{2n+1} .\frac{n(n+1)}{2} = \frac{n(n+1)d}{2n+1}$$
  • Question 3
    1 / -0
    Consider the frequency distribution
    Class interval:
    0-6
    6-12
    12-18
    Frequency:
    2
    4
    6
    The variance of the above frequency distribution, is
    Solution
    Class interval$$f_i$$$$x_i$$$$d_i={x_i-A}$$$$d_i^2$$$$f_id_i^2$$$$f_id_i$$
    0-623-63672-12
    6-12490000
    12-1861563621636
    Here,$$N=\sum {f_i }=12$$
    $$\sum {f_id_i^2}=288$$
    $$\sum {f_id_i}=24$$

    Now, variance $$\displaystyle { \sigma  }^{ 2 }=\frac { \sum { f_{ i }d_{ i }^{ 2 } }  }{ N } -{ \left( \frac { \sum { f_{ i }d_{ i } }  }{ N }  \right)  }^{ 2 }$$

    $$\Rightarrow \displaystyle { \sigma  }^{ 2 }=\frac { 288 }{ 12 } -{ \left( \frac { 24 }{ 12 }  \right)  }^{ 2 }$$

    $$\Rightarrow { \sigma  }^{ 2 }=20$$
  • Question 4
    1 / -0
    If a variable $$X$$ takes values $$0,1,2,....,n$$ with frequencies $${ _{  }^{ n }{ C } }_{ 0 },{ _{  }^{ n }{ C } }_{ 1 },{ _{  }^{ n }{ C } }_{ 2 },......{ _{  }^{ n }{ C } }_{ n }\quad $$ respectively, then S.D. is equal to :
    Solution
    Here,  $$\displaystyle \mu1'$$ $$=\frac{\sum r\frac{n}{r}^{n-1}C_{r-1}}{\sum ^{n}C_{r}}$$ $$\displaystyle $$
    and 
    $$\displaystyle \mu 2' $$$$\displaystyle=\frac{1}{2^{n}}\sum_{0}^{n}r\left ( r-1 \right )^{n}C_{r}+\frac{n}{2}$$  

    $$\displaystyle =\frac{1}{2^{n}}\sum_{0}^{n}r\left ( r-1 \right )\frac{n\left ( n-1
    \right )}{r\left ( r-1 \right )}^{n-2}C_{r-2}+\frac{n}{2}$$ $$\displaystyle =\frac{n\left ( n-1 \right)}{2^{n}}.2^{n-2}+\frac{n}{2}$$ $$\displaystyle =\frac{n\left ( n-1 \right )}{4}+\frac{n}{2}$$ 

    $$\therefore$$ Variance $$\displaystyle \sigma^2=\mu 2'-\left (\mu 1' \right )^{2}$$ $$\displaystyle =\frac{n\left ( n-1 \right )}{4}+\frac{n}{2}-\left ( \frac{n}{2} \right )^{2}=\frac{n}{4}  \mbox{or}  S.D = \sigma = \sqrt{\sigma^2} = \frac{\sqrt{n}}{2}$$
  • Question 5
    1 / -0
    Mean deviation for $$n$$ observations $${ x }_{ 1 },{ x }_{ 2 },.....{ x }_{ n }$$ from their mean $$\bar { X } $$ is given by:
    Solution
    It is fundamental concept that mean deviation of $$n$$ observations $$x_1, x_2, x_3, ......x_n$$ about mean $$\bar{X}$$ is given by, $$\displaystyle \frac{1}{n} \sum_{i=1}^{i=n} |x_i-\bar{X}|$$
  • Question 6
    1 / -0
    If the mean deviation about the median of the numbers $$a,2a,3a,.....50a$$ is $$50$$, then $$\left| a \right| $$ equals

    Solution
    Given data is 
    $$a,2a, 3a,....49a,50a$$
    Here, $$n=50 (even)$$
    So, median $$M= \dfrac{\text{value of }25^{th}\text{observation}+\text{value of }26^{th}\text{observation}}{2}$$
    $$M=\dfrac{25a+26a}{2}=25.5a$$

    Mean deviation about median $$M.D=\dfrac{\sum |x_i-25.5a|}{50}$$
    $$\Rightarrow 50=\dfrac{|a-25.5a|+|2a-25.5a|+.......+|24a-25.5a|+|25a-25.5a|+|26a-25.5a|+.....|50a-25.5a|}{50}$$

    $$\Rightarrow 2500=|a|+2(1.5+2.5+.....24.5)|a|$$

    $$\Rightarrow 2500=|a|+2\times 12 (3+23)|a|$$
    $$\Rightarrow |a|=\dfrac{2500}{625}=4$$

  • Question 7
    1 / -0

    Directions For Questions

    The standard deviation of variate $$x$$ is the square root of the A.M. of the squares of all deviations of $$x$$ from the A.M. of observations and we denote it by sigma $$ \displaystyle \left ( \sigma \right ) $$ if  $$ \displaystyle x/f_{i}\left ( i = 1,2,3,...,n \right ) $$ is a frequency distribution, then

    $$ \displaystyle \sigma =\sqrt{\frac{1}{N}\sum f_{i}\left ( x_{i}-\bar{x} \right )^{2}} $$           ........(i)

    where $$ \displaystyle \bar{x} $$ is the A.M.of the distribution & $$ \displaystyle N=\sum_{i=1}^{n}f_{i} $$

    The square of the standard deviation is called the variance & given by

    $$ \displaystyle \sigma ^{2}=\frac{1}{N}\sum_{i=1}^{n}f_{i}\left ( x_{i}-\bar{x} \right )^{2} $$     ........(ii)

    The calculation of coefficient of dispersion & coefficient of variation are count down by $$ \displaystyle \frac{\sigma }{\bar{x}} $$ & $$ \displaystyle \frac{\sigma }{\bar{x}}\times 100 $$ respectively.

    If deviation of $$x$$ are measured from an assumed mean $$A$$ then root mean square deviation of $$x$$ is denoted by $$S$$ and given by

    $$ \displaystyle S= \sqrt{\frac{1}{N}\sum_{i=1}^{n}f_{i}\left ( x_{i} -A\right )^{2}} $$ 

    which set up the relationship between S.D. and Root mean square deviation given by $$ \displaystyle S^{2}=\sigma ^{2}+d^{2}\left ( Where, d=\sum_{i=1}^{n} x_i-A \right ) $$

    Consider the frequency distribution

    Size46810121416
    Frequency1235321

    On the basis of above information answer the following questions.

    ...view full instructions

    The coefficient of dispersion for the given distribution is
    Solution
    First of all find the mean of the given frequency distribution after getting mean, then find deviation for each size.
    $$\begin{matrix}
    size\left

    ( x \right ) & frequency\left ( f \right ) & f(x) &

    Deviation   x=X-\bar{x}\left ( say\:\bar{x}=10 \right ) & x^{2} &

    fx^{2}\\
    4 & 1 & 4 & -6 & 36 & 36\\
    6 & 2 & 12 & -4 & 16 & 32\\
    8 & 3 & 24 & -2 & 4 & 12\\
    10 & 5 & 50 & 0 & 00 & 0\\
    12 & 3 & 36 & +2 & 4 & 12\\
    14 & 2 & 28 & +4 & 16 & 32\\
    16 & 1 & 16 & +6 & 36 & 36\\
     & \sum f=N=17 & \sum f\left ( x \right )=170 &  &  & \sum f(x^{2})=160
    \end{matrix}$$

    $$\therefore $$   $$\displaystyle \bar{x}=\frac{170}{17}=10$$
    Hence coefficient of dispersion (variation) $$\displaystyle =\frac{\sigma }{\bar{X}}\times 100=0.306$$

  • Question 8
    1 / -0

    Directions For Questions

    The standard deviation of variate $$x$$ is the square root of the A.M. of the squares of all deviations of $$x$$ from the A.M. of observations and we denote it by sigma $$ \displaystyle \left ( \sigma \right ) $$ if  $$ \displaystyle x/f_{i}\left ( i = 1,2,3,...,n \right ) $$ is a frequency distribution, then

    $$ \displaystyle \sigma =\sqrt{\frac{1}{N}\sum f_{i}\left ( x_{i}-\bar{x} \right )^{2}} $$           ........(i)

    where $$ \displaystyle \bar{x} $$ is the A.M.of the distribution & $$ \displaystyle N=\sum_{i=1}^{n}f_{i} $$

    The square of the standard deviation is called the variance & given by

    $$ \displaystyle \sigma ^{2}=\frac{1}{N}\sum_{i=1}^{n}f_{i}\left ( x_{i}-\bar{x} \right )^{2} $$     ........(ii)

    The calculation of coefficient of dispersion & coefficient of variation are count down by $$ \displaystyle \frac{\sigma }{\bar{x}} $$ & $$ \displaystyle \frac{\sigma }{\bar{x}}\times 100 $$ respectively.

    If deviation of $$x$$ are measured from an assumed mean $$A$$ then root mean square deviation of $$x$$ is denoted by $$S$$ and given by

    $$ \displaystyle S= \sqrt{\frac{1}{N}\sum_{i=1}^{n}f_{i}\left ( x_{i} -A\right )^{2}} $$ 

    which set up the relationship between S.D. and Root mean square deviation given by $$ \displaystyle S^{2}=\sigma ^{2}+d^{2}\left ( Where, d=\sum_{i=1}^{n} x_i-A \right ) $$

    Consider the frequency distribution

    Size46810121416
    Frequency1235321

    On the basis of above information answer the following questions.

    ...view full instructions

    The coefficient of variation for the given distribution is
    Solution
    Lett $$A=10$$ 
    $$Size$$
    $$x_i$$ 
    $$Frequency$$
    $$f_i$$ 
    $$f_ix_i$$ $$(x_i-A)^2$$ $$f_i(x_i-A)^2$$ 
    $$4$$ $$1$$ $$4$$ $$36$$ $$36$$ 
    $$6$$ $$2$$ $$12$$ $$16$$$$32$$ 
    $$8$$ $$3$$ $$24$$ $$4$$ $$12$$ 
    $$10$$ $$5$$ $$50$$ $$0$$$$0$$ 
    $$12$$ $$3$$ $$36$$ $$4$$$$12$$ 
    $$14$$ $$2$$ $$28$$ $$16$$ $$32$$ 
    $$16$$ $$1$$ $$16$$ $$36$$ $$16$$ 
     $$\sum f_i=17$$ $$\sum f_ix_i=170$$  $$\sum f_i(x_i-A)^2=140$$ 
    $$\Rightarrow$$  $$\overline{x}=\dfrac{\sum f_ix_i}{\sum f_i}=\dfrac{170}{17}=10$$
    Now, $$S.D (\sigma)=\sqrt{\dfrac{\sum f_i(x_i-A)^2}{\sum f_i}}$$

                            $$=\sqrt{\dfrac{140}{17}}$$
                            $$=2.86$$
    $$\Rightarrow$$  Coefficient of variation $$=\dfrac{\sigma}{\overline{x}}\times 100$$
                                                       
                                                 $$=\dfrac{2.86}{10}\times 100$$
                                                 $$=28.6$$

  • Question 9
    1 / -0
    If $$n> 1, x> -1, x\neq 0$$, then the statement $$\left ( 1+x \right )^{n}> 1+nx$$ is true for
    Solution
    $$P(1)$$ is not true 

    For $$n=2,P\left( 2 \right) :{ \left( 1+x \right)  }^{ 2 }>1+2x$$ is true if $$x\neq 0$$

    Let $$P(k):{ \left( 1+x \right)  }^{ k }>1+kx$$ be two 

    $$\therefore{ \left( 1+x \right)  }^{ k+1 }=\left( 1+x \right) { \left( 1+x \right)  }^{ k}>\left( 1+x \right) \left( 1+kx \right)> 1+\left( k+1 \right) x+k{ x }^{ 2}>1+\left(k+1\right) x$$

    $$\left( \because k{ x }^{ 2 }>0 \right) $$
    $$\therefore$$ By PMI
    Given statement is true for every $$n\in N$$.
  • Question 10
    1 / -0
    If $$25$$ is the arithmetic mean of $$ X$$ and $$46,$$ then find $$X.$$
    Solution
    Since $$25$$ is the arithmetic mean of $$X$$ and $$46$$, 

    $$\therefore 25=\displaystyle \frac{(X+46)}{2}$$
    $$\therefore  X+46=50$$
    $$\therefore  X=4$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now