Self Studies

Statistics Test - 26

Result Self Studies

Statistics Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the coefficient of variation of some observation is 60 and their standard deviation is 20, then their mean is

    Solution
    We know coefficient of variation C. V. $$\displaystyle =\frac{\sigma _{x}}{\bar{x}}\times 100$$
    $$\therefore $$   $$\displaystyle 60=\frac{20}{\bar{x}}\times 100$$   $$\therefore $$   $$\bar{x}=33.33$$(nearly)


  • Question 2
    1 / -0
    The coefficients of variation of two series are $$58$$% and $$69$$%. If their standard deviations are $$21.2$$ and $$15.6$$, then their A.M's are 
    Solution
    We know that $$\displaystyle C.V.=\frac { \sigma \times 100 }{ \overline { x }  } \Rightarrow \overline { x } =\frac { \sigma  }{ C.V. } \times 100$$
    $$\therefore$$ Mean of first series $$\displaystyle =\frac { 21.2\times 100 }{ 58 } =36.6$$
    Mean of second series $$\displaystyle =\frac { 15.6\times 100 }{ 69 } =22.6$$
  • Question 3
    1 / -0
    The Coefficient of Variation is given by:
    Solution
    The coefficient of variation (CV) is a standardized measure of dispersion 
    . It is defined as the ratio of the standard deviation to the mean.
    $$CV\quad =\quad \cfrac { \sigma  }{ Mean }\times100 $$
  • Question 4
    1 / -0
    The variance of the data:
    x:
    $$1$$
    $$a$$
    $${ a  }^{ 2 }$$
    ......
    $${ a }^{ n }$$
    f:
    $${ _{  }^{ n }{ C } }_{ 0 }$$
    $${ _{  }^{ n }{ C } }_{ 1 }$$
    $${ _{  }^{ n }{ C } }_{ 2 }$$
    ......
    $${ _{  }^{ n }{ C } }_{ n }$$
    is
    Solution
    $$ \displaystyle \bar { X } =\frac { \sum { { f }_{ i }{ x }_{ i } }  }{ \sum { { f }_{ i } }  } \\ \displaystyle =\frac { ^{ n }C_{ 0 }+a.^{ n }C_{ 1 }+{ a }^{ 2 }.^{ n }C_{ 2 }+....{ a }^{ n }.^{ n }C_{ n } }{ ^{ n }C_{ 0 }+^{ n }C_{ 1 }+^{ n }C_{ 2 }+....^{ n }C_{ n } } \\ \displaystyle =\frac { { \left( 1+a \right)  }^{ n } }{ { 2 }^{ n } } $$
    .
    $$ \displaystyle S.D.=\sqrt { \frac { \sum { { f }_{ i }{ { x }_{ i } }^{ 2 } }  }{ \sum { { f }_{ i } }  } -{ \left( \frac { \sum { { f }_{ i }{ x }_{ i } }  }{ \sum { { f }_{ i } }  }  \right)  }^{ 2 } } \\ \displaystyle =\sqrt { \frac { ^{ n }C_{ 0 }+{ a }^{ 2 }.^{ n }C_{ 1 }+{ a }^{ 4 }.^{ n }C_{ 2 }+....{ a }^{ 2n }.^{ n }C_{ n } }{ ^{ n }C_{ 0 }+^{ n }C_{ 1 }+^{ n }C_{ 2 }+....^{ n }C_{ n } } -{ \left[ \frac { { \left( 1+a \right)  }^{ n } }{ { 2 }^{ n } }  \right]  }^{ 2 } } \\ \displaystyle \sqrt { \frac { { \left( 1+{ a }^{ 2 } \right)  }^{ n } }{ { 2 }^{ n } } -{ \left( \frac { 1+a }{ 2 }  \right)  }^{ 2n } } $$

    $$Variance = (S.D)^2$$
  • Question 5
    1 / -0
    In a final examination in Statistics the mean marks of a group of $$150$$ students were $$78$$ and the S.D was $$8.0$$. In Economics, however, the mean marks were $$73$$ and the S.S was $$7.6$$. The variability in the two subjects respectively is
    Solution
    Coefficient of variance $$=\dfrac{\sigma}{\bar{x}} \times 100$$

    For Statistics, $$\sigma =8, \bar x=78$$
    So, coefficient of variation $$ =\dfrac{8}{78} \times 100=10.3$$%

    For economics, $$\sigma =7.6, \bar x=73$$
    So, coefficient of variation $$ =\dfrac{7.6}{73} \times 100=10.4$$%
  • Question 6
    1 / -0
    If mean of a series is 40 and variance 1486, then coefficient of variation is 
    Solution
    If mean of the given dist. be $$\bar{x}$$ and S.D be $$\sigma $$
    then given $$\bar{x} = 40, \sigma^2 = 1486$$
    $$\therefore$$ Coefficient of variation $$=\cfrac{\sigma}{\bar{x}}=\cfrac{\sqrt{1486}}{40}=.9637$$
  • Question 7
    1 / -0
    The mean of first five prime numbers is
    Solution
    First five prime numbers are: $$2,3,5,7,11$$
    Mean $$= \cfrac{\text{Sum}}{\text{Count of Numbers}}$$
    Mean $$= \cfrac{2 + 3 + 5 + 7 + 11}{5}$$
    Mean $$= \cfrac{28}{5}$$
    Mean $$= 5.6$$
  • Question 8
    1 / -0
    The S.D. of the following frequency distribution is 
    Class0-1010-2020-3030-40
    $$\displaystyle f_{i}$$1342
    Solution
    Class$$x_i$$$$f_i$$$$u_i=\dfrac{x_i-a}{h}$$$$f_iu_i$$$$f_iu_i^2$$
    0-1051-2-24
    10-20153-1-33
    20-30254000
    30-40352122
    $$N=10$$$$\sum f_iu_i=-3$$$$\sum f_iu_i^2=9$$
    $$\displaystyle \sigma =h\sqrt{\frac{ \Sigma f_{1}u_{1}^{2}}{N}-\left ( \frac{\Sigma f_{1}u_{1}}{N} \right )^{2}}$$

    $$\displaystyle =10\sqrt{\frac{9}{10}-\left ( \frac{-3}{10} \right )^{2}}=9$$
  • Question 9
    1 / -0
    The marks of a class test are given below.
    $$28, 26, 17, 12, 14, 19, 27, 26, 21, 16, 15$$. Find the median.
    Solution
    The marks in the test are: $$28, 26, 17, 12, 14, 19, 27, 26, 21, 16, 15$$
    Arranging the marks in the test in ascending order: $$12, 14, 15, 16, 17, 19, 21, 26, 26, 27, 28$$
    There are $$11$$ values. Since, it is an odd number, median will be the $$6^{th}$$ number after arranging the marks in ascending order.
    Hence, median $$= 19$$
  • Question 10
    1 / -0
    What is the mean of first 8 whole numbers?
    Solution
    First $$8$$ whole numbers are $$ 0,1,2,3,4,5,6,7$$

    We know that, $$\text{Mean}=\dfrac{\text{Sum of all observations}}{\text{Total number of observations}}$$

    $$\therefore \ \text{Mean}=\dfrac {0+1+2+3+4+5+6+7}{8}$$
    $$\Rightarrow \dfrac {28}{8}=3.5$$
    Hence, the mean of first $$8$$ whole numbers is $$3.5$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now