`
Self Studies

Statistics Test - 28

Result Self Studies

Statistics Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The coefficient of mean deviation from median of observations  $$40, 62, 54, 90, 68, 76$$  is
    Solution
    Arrange the given observations in ascending order
    $$40,54,62,68,76,90$$
    Here, number of terms $$n=6 (even) $$
    $$\displaystyle \therefore $$ Median (M) $$\displaystyle =\frac{\left ( \frac{n}{2} \right )th\:term+\left ( \frac{n}{2}+1 \right )th\:term}{2}=\frac{62+68}{2}=65$$

    $$\Sigma \left | x_{i}-M \right |=25+11+3+3+11+25=78$$
    Mean deviation from median $$\displaystyle =\frac{\Sigma \left | x_{i}-M \right |}{n}=\frac{78}{6}=13 $$
    $$\therefore $$ Coefficient of M.D.=$$\displaystyle =\frac{M.D.}{median}=\frac{13}{65}=0.2$$
  • Question 2
    1 / -0
    The arithmetic mean of first ten natural numbers is
    Solution
    Formula used:
    $$\text{Arithmetic mean}= \dfrac{\text{Sum of given numbers}}{\text{Total numbers}}$$

    So, by using the above formula we get,
    $$A.M=\dfrac{1+2+3+...+10}{10}$$
               $$=\dfrac{55}{10}$$
               $$=5.5$$

    Hence, option $$A$$ is correct.
  • Question 3
    1 / -0
    The sum of the squares of deviation of 10 observations from their mean 50 is 250, then coefficient of variation is
    Solution
    Given,   $$\sum (x-\bar{x})^2 = 250, n = 10, \bar{x} =50$$
    Thus standard deviation $$ = \sqrt{\cfrac{\sum (x-\bar{x})^2}{n}}=\sqrt{25}=5$$
    $$\therefore$$ Coefficient of variation $$=\cfrac{\sigma}{\bar{x}}\times 100 =\cfrac{5}{50}\times 100$$ % $$= 10$$%

  • Question 4
    1 / -0
    The S.D. of the following freq. dist.
    Class 0-1010-2020-3030-40
    $$f_i$$1342
    Solution
    Class     $$x_i$$   $$f_i$$   $$u_i=\dfrac{x_i-A}{h}$$  $$u_i^2$$        $$f_iu_i$$     $$f_iu_i^2$$
    0-1051-24-24
    10-20153-11-33
    20-302540000
    30-403521122
    Total10-39
    $$S.D.$$$$=h\sqrt { \cfrac { \sum { { f }_{ i }{ u }_{ i }^{ 2 } }  }{ \sum { { f }_{ i } }  } -{ \left( \cfrac { \sum { f } _{ i }{ u }_{ i } }{ \sum { { f }_{ i } }  }  \right)  }^{ 2 } } $$
    $$S.D.=10\sqrt { \cfrac { 9 }{ 10 } -{ \left( \cfrac { -3 }{ 10 }  \right)  }^{ 2 } } =9$$
  • Question 5
    1 / -0
    The mean of a dist. is $$4$$. if its coefficient of variation is $$58\%$$. Then the S.D. of the dist. is
    Solution
    We know if a distribution having mean $$\bar{x}$$ and standard deviation $$\sigma$$
    then coefficient of variation $$=\cfrac{\sigma}{\bar{x}}\times 100$$
    $$\therefore \cfrac{\sigma}{4}\times 100=58\Rightarrow \sigma = \cfrac{58}{25}=2.32$$
    Hence required standard deviation is $$=2.32$$
  • Question 6
    1 / -0
    The mean deviation from mean of observations 5, 10, 15, 20, ......85 is
    Solution
    Given series is $$5,10,15,....,85$$, which is an AP.
    Last term $$85=a+(n-1)d$$
    $$\Rightarrow n=17$$
    Sum of $$n$$ terms of AP $$=\dfrac{17}{2}(5+85)$$
    $$\sum x_i=765$$

    $$\bar x=\dfrac{\sum x_i}{n}$$

    $$\bar x=\dfrac{765}{17}=45$$

    So, deviations from mean are $$40,35,25,20,15,10,5,0,5,10,15,20,25,30,35,40$$
    Sum of deviations $$=360$$

    Mean deviation from mean $$=\dfrac{360}{17}=21.17$$
  • Question 7
    1 / -0
    The mean deviation of $$\displaystyle \frac{a+b}{2}\: \: and\: \: \frac{a-b}{2} $$ (where a and b >0) is?
    Solution

    The given observations are: $$\dfrac{a + b}{2}$$ and $$\dfrac{a - b}{2}$$
    Mean of the observations = $$\dfrac{\dfrac{a + b}{2} + \dfrac{a - b}{2}}{2} = \dfrac{a}{2}$$

    Now, mean deviation = $$\dfrac{|\dfrac{a + b}{2} - \dfrac{a}{2}| + |\dfrac{a - b}{2} - \dfrac{a}{2}|}{2}$$ = $$\dfrac{b}{2}$$

  • Question 8
    1 / -0
    Standard deviation of the distribution $$1, 3, 5,....., 13$$ will be
    Solution
    Mean of the given numbers is $$\bar x =\dfrac{1+3+5+7+9+11+13}{7}=\dfrac{49}{7}=7$$

    total number of values $$n=7$$

    Standard deviation is given by $$SD=\sqrt{\dfrac{\sum_{i=1}^n (x_i-\bar x)^2}{n-1}}$$

    $$\implies SD=\sqrt{\dfrac{(1-7)^2+(3-7)^2+(5-7)^2+(7-7)^2+(9-7)^2+(11-7)^2+(13-7)^2}{7-1}}$$

    $$\implies SD=\sqrt{\dfrac{36+16+4+0+4+16+36}{6}}$$

    $$\implies SD=\sqrt{\dfrac{112}{6}}$$

    $$\implies SD=\sqrt{18.6667}=4.32$$

    Therefore the standard deviation for the given values is $$4.32$$
  • Question 9
    1 / -0
    In the following table pass percentage of three schools from the year $$2001$$ to the year $$2006$$ are given. Which school students performance is more consistent?

    $$2001$$$$2002$$$$2003$$$$2004$$$$2005$$$$2006$$
    School (X)$$80$$$$89$$$$79$$$$83$$$$84$$$$65$$
    School (Y)$$92$$$$94$$$$76$$$$75$$$$80$$$$63$$
    School (Z)$$93$$$$97$$$$67$$$$63$$$$70$$$$85$$
    Solution
    Average of $$x=\cfrac { 80+89+79+83+84+65 }{ 6 } =\cfrac { 480 }{ 6 } =80$$
    Average of $$y=\cfrac { 92+94+76+75+80+63 }{ 6 } =\cfrac { 480 }{ 6 } =80$$
    Average of $$z=\cfrac { 93+97+67+63+70+85 }{ 6 } =79.16$$
    Average of x and y are equal and more than z.
    So,their performance is consistent. 
  • Question 10
    1 / -0
    The mean deviation of first 8 composite numbers is
    Solution
    Mean deviation is the mean of the absolute differences between each value in the data set and the mean of the data set.

    Mean is the sum of the values in the data set divided by the total number of values.

    A composite number is an integer which is not a prime.
    The first $$8$$ composite numbers are $$4,6,8,9,10,12,14,15$$

    Mean of the composite numbers is $$\dfrac{4+6+8+9+10+12+14+15}{8}$$

    $$\implies mean =\dfrac{78}{8}=9.75$$

    The absolute difference between the data values and mean is $$|9.75-4|,|9.75-6|,|9.75-8|,|9.75-9|,|9.75-10|,|9.75-12|,|9.75-14|,|9.75-15|$$ 

    Therefore, the data  values after finding the absolute differences are $$5.75,3.75,1.75,0.75,0.25,2.25,4.25,5.25$$ 

    Therefore, the mean deviation is $$\dfrac{5.75+3.75+1.75+0.75+0.25+2.25+4.25+5.25}{8}=\dfrac{24}{8}=3$$

    Therefore, the mean deviation of first eight composite numbers is $$3$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now