Self Studies

Statistics Test - 35

Result Self Studies

Statistics Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Calculate the standard deviation of the following data.
    $$10, 20, 15, 8, 3, 4$$
    Solution
    $$\Rightarrow$$  The given numbers  are $$3,4,8,10,15,20$$.
    $$\Rightarrow$$  $$\overline{X}=\dfrac{3+4+8+10+15+20}{6}=10$$

     $$X$$$$X-\overline{X}$$ $$(X-\overline{X})^2$$ 
    $$3$$ $$-7$$ $$49$$ 
    $$4$$ $$-6$$ $$36$$ 
    $$8$$ $$-2$$ $$4$$ 
    $$10$$ $$0$$ $$0$$ 
    $$15$$ $$5$$ $$25$$ 
    $$20$$ $$10$$ $$100$$ 
      $$\sum (X-\overline{X})^2=214$$ 
    $$\Rightarrow$$  $$S=\sqrt{\dfrac{(X-\overline{X})^2}{N}}$$
             $$=\sqrt{\dfrac{214}{6}}$$
             $$=\sqrt{35.66}$$
             $$=5.97$$

  • Question 2
    1 / -0
    Which one of the following is a measure of dispersion?
    Solution
    Dispersion is the extent to which the distribution is stretched or squeezed.
    The most common measures of dispersion are variance, standard deviation, mean deviation, range etc.
  • Question 3
    1 / -0
    The mean and the variance of $$10$$ observations are given to be $$4$$ and $$2$$ respectively. If every observation is multiplied by $$2$$, the mean and the variance of the new series will be respectively.
    Solution
    Mean is summation of all observations divided by number of observation and hence, would be multiplied by $$2$$ due to linearity. Hence, the new mean is $$8$$.
    Variance is sum of squares of each observation subtracted by the mean. Hence, due to squared dependence, it will be quadrupled to get $$8$$.
    Hence, both mean and variance are $$8$$.
  • Question 4
    1 / -0
    Find the variance of the following distribution.
    Class interval
    $$20-24$$
    $$25-29$$
    $$30-34$$
    $$35-39$$
    $$40-44$$
    $$45-49$$
    Frequency
    $$15$$
    $$25$$
    $$28$$
    $$12$$
    $$12$$
    $$8$$
    Solution
    $$Class$$ $$Mid-point$$
    $$(x)$$ 
    $$Frequency$$
    $$(f)$$ 
    $$xf$$ $$(x-\overline{x})$$ $$(x-\overline{x})^2$$ $$(x-\overline{x})^2f$$ 
    $$20-24$$ $$22$$ $$15$$ $$330$$ $$-10.25$$ $$105.0625$$ $$1575.9375$$ 
    $$25-29$$ $$27$$ $$25$$ $$675$$ $$-5.25$$ $$27.5625$$ $$689.0625$$ 
    $$30-34$$ $$32$$ $$28$$ $$896$$ $$-0.25$$ $$0.0625$$ $$1.75$$ 
    $$35-39$$ $$37$$ $$12$$ $$444$$ $$4.75$$ $$22.5625$$ $$270.75$$ 
    $$40-44$$ $$42$$ $$12$$ $$504$$ $$9.75$$ $$95.0625$$ $$1140.75$$ 
    $$45-49$$ $$47$$ $$8$$ $$376$$ $$14.75$$ $$217.5625$$ $$1740.5$$ 
      $$\sum f=100$$ $$\sum xf=3225$$   $$\sum(x-\overline{x})^2f=5418.75$$  
    $$\Rightarrow$$  $$Mean(\overline{x})=\dfrac{\sum xf}{\sum f}=\dfrac{3225}{100}=32.25$$
    $$\Rightarrow$$  $$Variance(\sigma^2)=\dfrac{\sum(x-\overline{x})^2f}{\sum f}=\dfrac{5418.75}{100}=54.18$$
  • Question 5
    1 / -0
    If $$n=10, \bar{x}=12$$ and $$\sum x^2=1530$$, then calculate the coefficient of variation.
    Solution
    $$\sigma=\sqrt{\dfrac{\sum x^2}{n}-\left(\dfrac{\sum x}{n}\right)^2}$$
       
       $$=\sqrt{\dfrac{1530}{10}-(12)^2}$$

       $$=\sqrt{153-144}$$
       $$=\sqrt{9}$$
       $$=3$$

    Coefficient of variation $$=\dfrac{\sigma}{\overline{x}}\times 100$$

                                           $$=\dfrac{3}{12}\times 100$$

                                           $$=\dfrac{1}{4}\times 100$$
                                           $$=25$$
  • Question 6
    1 / -0
    Calculate the standard deviation of the following data.
    x
    $$3$$
    $$8$$
    $$13$$
    $$18$$
    $$23$$
    f
    $$7$$
    $$10$$
    $$15$$
    $$10$$
    $$8$$
    Solution
    $$x$$ $$f$$ $$xf$$ $$(x-\overline{x})$$ $$(x-\overline{x})^2$$ $$(x-\overline{x})^2f$$  
    $$3$$ $$7$$ $$21$$ $$-10.2$$ $$104.04$$ $$728.28$$ 
    $$8$$ $$10$$ $$80$$ $$-5.2$$$$27.04$$ $$270.4$$ 
    $$13$$ $$15$$ $$195$$ $$-0.2$$ $$0.04$$ $$0.6$$ 
    $$18$$ $$10$$ $$180$$ $$4.8$$ $$23.04$$ $$230.4$$ 
    $$23$$ $$8$$ $$184$$ $$9.8$$ $$96.04$$ $$768.32$$ 
     $$\sum f=50$$ $$\sum xf=660$$   $$\sum(x-\overline{x})^2=1998$$ 
    $$\Rightarrow$$  $$\overline{x}=\dfrac{\sum xf}{\sum f}=\dfrac{660}{50}=13.2$$
    Now, calculate standard deviation :
    $$S=\sqrt{\dfrac{(x-\overline{x})^2}{\sum f}}=\sqrt{\dfrac{1998}{50}}=\sqrt{39.96}=6.32$$
  • Question 7
    1 / -0
    The variance of $$20$$ observations is $$5$$. If each observation is multiplied by $$2$$, then what is the new variance of the resulting observations?
    Solution


    $$\textbf{Step -1: Write the formula of variance.}$$

                   

                     $$\textbf{Variance = }$$$$\mathbf{ \dfrac{1}{n}\sum \left ( x_{i}-\bar{x} \right )^{2}}$$                

                                                      

                     $$\text{ where n is the number of observations}$$

                                  $$x_{i}\text{ is the observations}$$

                                  $$\bar{x}\text{ is mean value of the observations.}$$


    $$\textbf{Step -2: Find }$$   $$\mathbf{\sum \left ( x_{i}-\bar{x} \right )^{2}}$$

                     $$\text{Let }x_{_1}, x_{_2}, ……x_{_{20}}\text{ are the observations.}$$

                     $$\text{We have, Variance = 5, n = 20}$$

                     $$\text{Variance} = \dfrac{1}{n}\sum \left ( x_{i}-\bar{x} \right )^{2}$$

                     $$\Rightarrow\dfrac{1}{20}\sum \left ( x_{i}-\bar{x} \right )^{2}=5$$

                     $$\Rightarrow\sum \left ( x_{i}-\bar{x} \right )^{2}= 100 \boldsymbol{\qquad\rightarrow(1)}$$


    $$\textbf{Step -3: Write new observations.}$$

                      $$\text{Multiplying all observations with 2, we get new observations }y_{1}, y_{2}, ……y_{20}$$

                      $$\text{Where }y_{i}= 2x_{i}        \boldsymbol{ \qquad\qquad→(2)}$$


    $$\textbf{Step -4: Calculating the mean of y(new observations).}$$

                      $$\bar{y}=\dfrac{1}{n}\sum y_{i}$$

                         $$=\dfrac{1}{20}\sum 2x_{i}$$

                         $$=2\left \{ \left ( \dfrac{1}{20} \right )\sum x_{i} \right \}$$

                         $$=2\bar{x}           \qquad\qquad \boldsymbol{ →(3})$$


    $$\textbf{Step -5: Find }$$$$\mathbf{\sum \left ( y_{i}-\bar{y} \right )^{2}.}$$

                      $$\text{From equation 1, we can write,}$$$${\sum \left ( x_{i}-\bar{x} \right )^{2}=100}$$

                      $${\Rightarrow\sum \left ( \dfrac{1}{2}y_{i}-\dfrac{1}{2}\bar{y} \right )^{2}=100}$$             $$\textbf{[ From equation 2 and 3 ]}$$

                      $$\Rightarrow \left (\dfrac{1}{2} \right ) ^2\sum \left ( y_{i}-\bar{y} \right )^{2}=100$$

                      $$\Rightarrow \sum \left ( y_{i}-\bar{y} \right )^{2}=400$$


    $$\textbf{Step - 6: Calculate new variance.}$$

                       $$\text{New variance}=\left (\dfrac{1}{n}\right )\sum \left ( y_{i}-\bar{y} \right )^{2}$$

                                                 $${=\dfrac{1}{20}\times 400=20}$$

                       $$\therefore\text{The new variance of resulting observation is 20.}$$

    $$\textbf{Hence, the correct option is C.}$$

  • Question 8
    1 / -0

    Directions For Questions

    The mean and standard deviation of $$100$$ items are $$50, 5$$ and that of $$150$$ items are $$40, 6$$ respectively.

    ...view full instructions

    What is the combined standard deviation of all 250 items ?
    Solution
    Here $$n_1=100,\bar{x}_1=50, s_1=5,n_2=150,\bar{x}_2=40,s_2=6$$

    $$\therefore \sigma=\sqrt{\dfrac{n_1s_1^2+n_2s_2^2}{n_1+n_2}+\dfrac{n_1n_2(\bar{x}_1-\bar{x}_2)^2}{(n_1+n_2)^2}}$$

           $$=\sqrt{\dfrac{100(5)^2+150(6)^2}{100+150}+\dfrac{(100)(150)(50-40)^2}{(100+150)^2}}$$

           $$=\sqrt{\dfrac{158}{5}+24}$$
     
          $$=\sqrt{31.6+24}$$

          $$=\sqrt{55.6}$$

          $$=7.45$$

    $$\therefore \sigma=7.45$$
  • Question 9
    1 / -0
    The variance of numbers $$x_1, x_2, x_3,..... x_n$$ is V. Consider the following statements : 
    1. If every $$x_1$$, is increased by 2, the variance of the new set of numbers is V.
    2. If the numbers $$x_1$$ is squared, the variance of the new set is $$V^2$$.
    Which of the following statements is/are correct ?
    Solution
    In case 1, a deterministic value of 2 units is being added to every $$x_i$$ and hence, the variance of the set remains unchanged as $$V$$. New variance would be $$\dfrac{1}{n}\sum\left(x_i+2-\left(\sum\dfrac{x_i+2}{n}\right)\right)=\dfrac{1}{n}\sum\left(x_i-\sum\dfrac{x_i}{n}\right)=V$$
    In case 2, each $$x_i$$ is squared and hence, the mean becomes $$\dfrac{1}{n}\sum x_i^2 $$. Hence, the new variance is $$\dfrac{1}{n}\sum\left( x_i^2-\dfrac{1}{n}\sum x_i^2\right)^2$$
    and not $$V^2=\dfrac{1}{n^2}\sum\left( x_i-\dfrac{1}{n}\sum x_i\right)^4$$.
  • Question 10
    1 / -0
    Let X denote the number of scores which exceed 4 in 1 toss of a symmetrical die. Consider the following statements :
    1. The arithmetic mean of X is 6.
    2. The standard deviation of X is 2.
    Which of the above statements is/are correct ?
    Solution
    The only possible favorable outcomes are $$5$$ and $$6$$. Hence, the arithmetic mean of $$X$$ is 5.5.
    The standard deviation of $$X=\dfrac{1}{2}((6-5.5)^2+(5-55)^2)=0.25$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now