`
Self Studies

Relations and Functions Test - 23

Result Self Studies

Relations and Functions Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\left (A \cap B  \right ) \times C$$

    Solution

  • Question 2
    1 / -0
    Given $$M=\{5,6,7\}$$ and $$N=\{6,8,10\}$$ find element of $$(M\cup N)\times N$$
    Solution
    For two non-empty sets $$A$$ and $$B$$, the Cartesian product $$A\times B$$ is the set of all ordered pair of elements from $$A$$ and $$B$$.
    $$A \times B = \{(x, y) : x \in A, y \in  B\}$$ 

    If $$A= \{a,b\}$$ and $$B= \{x, y\},$$
    then $$A\times B = \{(a, x); (a, y); (b, x); (b, y)\}$$
    here, $$A=M\cup N$$ and $$B=N$$
    $$A=M\cup N$$ ={ $$5,6,7,8,10$$ }
    $$B=$${$$6,8,10$$}
    $$A\times B = (M\cup N)\times N=(A,6),(A,8),(A,10)$$
    hence A,B,C all are correct so answer is D
  • Question 3
    1 / -0
    If $$f(x) \displaystyle = \frac{2^x+2^{-x}}{2}$$, then $$f(x+y) \cdot f(x-y)=$$ ____________
    Solution
    Given that $$f(x)=\dfrac { { 2 }^{ x }+{ 2 }^{ -x } }{ 2 } $$
    $$ =\dfrac { { 2 }^{ x }+\frac { 1 }{ { 2 }^{ x } }  }{ 2 } $$

    $$  =\dfrac { { 2 }^{ 2x }+1 }{ { 2 }^{ x+1 } } $$

    $$ \therefore f(x+y)=\dfrac { { 2 }^{ 2(x+y) }+1 }{ { 2 }^{ x+y+1 } } $$

    $$ =\dfrac { 1 }{ 2 } \left[ { 2 }^{ x+y }+{ 2 }^{ -(x+y) } \right] $$

    Similarly, $$f(x-y)=\dfrac { 1 }{ 2 } \left[ { 2 }^{ x-y }+{ 2 }^{ -(x-y) } \right] $$

    $$ \therefore  f(x+y).f(x-y)=\dfrac { 1 }{ 2 } \left[ { 2 }^{ x+y }+{ 2 }^{ -x-y } \right] .\dfrac { 1 }{ 2 } \left[ { 2 }^{ x-y }+{ 2 }^{ -x+y } \right] $$

    $$ =\dfrac { 1 }{ 4 } \left( { 2 }^{ 2x }+{ 2 }^{ 2y }+{ 2 }^{ -2y }+{ 2 }^{ -2x } \right) $$

    $$ =\dfrac { 1 }{ 4 } \left[ \left( { 2 }^{ 2x }+{ 2 }^{ 2y })+({ 2 }^{ -2y }+{ 2 }^{ -2x } \right)  \right] $$

    $$ =\dfrac { 1 }{ 4 } \left[ 2f(2x)+2f(2y) \right] $$

    $$  =\dfrac { 1 }{ 2 } \left[ f(2x)+f(2y) \right] $$
  • Question 4
    1 / -0
    $$n(A)=4 $$ and  $$n(B) =5$$: $$n(A \times B)=$$
    Solution
    If $$n(A)=m$$,and $$n(B)=n$$,then $$n(A\times B)=mn$$
    so$$n(A\times B)=5.4=20$$
  • Question 5
    1 / -0
    n (A $$\times$$ B) =
    Solution

  • Question 6
    1 / -0
    Let A and B be finite sets containing m and n elements respectively. The number of relations that can be defined from A and B is:
    Solution
    Here, $$O(A)=m$$ and $$O(B)=n$$.
    Hence $$O(A×B)=mn$$
    Since every subset of $$A×B$$ is a relation from $$A$$ to $$B$$, therefore, number of relations from A to B is equal to the number of the subsets of $$A×B$$, i.e.,  $$2^{m{n}}$$
  • Question 7
    1 / -0
    Which of the following statements is true?
    Solution
    Since, Origin is the point of intersection of $$x$$ and $$y,$$ we can say that option $$D$$ is correct.
  • Question 8
    1 / -0
    Let A be a finite set containing n distinct elements. The number of relations that can be defined on A is:
    Solution
    Since $$A$$ contains $$n$$ distinct elements, therefore, $$A×A$$ contains $$n×n=n^2$$ distinct elements. since every subset of $$A×A$$ is a relation on $$A$$., therefore, number of relations on $$A$$ is equal to the order of the power set of $$A×A$$, is equal to the order of the power set of $$A×A$$, i.e., $$2^{n^{2}}$$
  • Question 9
    1 / -0
    If A $$=$$ {1, 2}, B $$=$$ {3, 4}, then A$$\times$$B $$=$$
    Solution

    $${\textbf{Step -1: Define the Cartesian product.}}$$

                   $${\text{Cartesian product: If }}A{\text{ and }}B{\text{ are two non empty sets, then }}$$ 

                   $${\text{Cartesian product }}A \times B{\text{ is set of all ordered pairs }}\left( {a,b} \right)$$ $${\text{such that }}a \in A{\text{ and }}b \in B.$$

    $${\textbf{Step -2: Find the Cartesian product of given sets.}}$$

                   $${\text{We have given,}}$$ 

                   $$A = \left\{ {1,2} \right\}$$ $${\text{and}}$$ $$B = \left\{ {3,4} \right\}$$

                   $${\text{So,}}$$ $$A \times B = \left\{ {\left( {1,3} \right),\left( {1,4} \right),\left( {2,3} \right),\left( {2,4} \right)} \right\}$$

    $${\textbf{Hence, option A. }}\left\{ \mathbf{\left( {1,3} \right),\left( {1,4} \right),\left( {2,3} \right),\left( {2,4} \right)} \right\}$$ $${\textbf{is correct answer.}}$$

  • Question 10
    1 / -0
    Which one of the statement is false ?
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now