Self Studies

Relations and Functions Test - 23

Result Self Studies

Relations and Functions Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    (AB )×C\left (A \cap B  \right ) \times C

    Solution

  • Question 2
    1 / -0
    Given M={5,6,7}M=\{5,6,7\} and N={6,8,10}N=\{6,8,10\} find element of (MN)×N(M\cup N)\times N
    Solution
    For two non-empty sets AA and BB, the Cartesian product A×BA\times B is the set of all ordered pair of elements from AA and BB.
    A×B={(x,y):xA,y   B}A \times B = \{(x, y) : x \in A, y \in  B\} 

    If A={a,b}A= \{a,b\} and B={x,y},B= \{x, y\},
    then A×B= {(a,x);(a,y);(b,x);(b,y)}A\times B = \{(a, x); (a, y); (b, x); (b, y)\}
    here, A=MNA=M\cup N and B=NB=N
    A=MNA=M\cup N ={ 5,6,7,8,105,6,7,8,10 }
    B=B={6,8,106,8,10}
    A×B=(MN)×N=(A,6),(A,8),(A,10)A\times B = (M\cup N)\times N=(A,6),(A,8),(A,10)
    hence A,B,C all are correct so answer is D
  • Question 3
    1 / -0
    If f(x)=2x+2x2f(x) \displaystyle = \frac{2^x+2^{-x}}{2}, then f(x+y)f(xy)=f(x+y) \cdot f(x-y)= ____________
    Solution
    Given that f(x)=2x+2x2f(x)=\dfrac { { 2 }^{ x }+{ 2 }^{ -x } }{ 2 }
    =2x+12x 2 =\dfrac { { 2 }^{ x }+\frac { 1 }{ { 2 }^{ x } }  }{ 2 }

     =22x+12x+1  =\dfrac { { 2 }^{ 2x }+1 }{ { 2 }^{ x+1 } }

    f(x+y)=22(x+y)+12x+y+1 \therefore f(x+y)=\dfrac { { 2 }^{ 2(x+y) }+1 }{ { 2 }^{ x+y+1 } }

    =12[2x+y+2(x+y)] =\dfrac { 1 }{ 2 } \left[ { 2 }^{ x+y }+{ 2 }^{ -(x+y) } \right]

    Similarly, f(xy)=12[2xy+2(xy)]f(x-y)=\dfrac { 1 }{ 2 } \left[ { 2 }^{ x-y }+{ 2 }^{ -(x-y) } \right]

     f(x+y).f(xy)=12[2x+y+2xy].12[2xy+2x+y] \therefore  f(x+y).f(x-y)=\dfrac { 1 }{ 2 } \left[ { 2 }^{ x+y }+{ 2 }^{ -x-y } \right] .\dfrac { 1 }{ 2 } \left[ { 2 }^{ x-y }+{ 2 }^{ -x+y } \right]

    =14(22x+22y+22y+22x) =\dfrac { 1 }{ 4 } \left( { 2 }^{ 2x }+{ 2 }^{ 2y }+{ 2 }^{ -2y }+{ 2 }^{ -2x } \right)

    =14[(22x+22y)+(22y+22x) ] =\dfrac { 1 }{ 4 } \left[ \left( { 2 }^{ 2x }+{ 2 }^{ 2y })+({ 2 }^{ -2y }+{ 2 }^{ -2x } \right)  \right]

    =14[2f(2x)+2f(2y)] =\dfrac { 1 }{ 4 } \left[ 2f(2x)+2f(2y) \right]

     =12[f(2x)+f(2y)]  =\dfrac { 1 }{ 2 } \left[ f(2x)+f(2y) \right]
  • Question 4
    1 / -0
    n(A)=4n(A)=4 and  n(B)=5n(B) =5: n(A×B)=n(A \times B)=
    Solution
    If n(A)=mn(A)=m,and n(B)=nn(B)=n,then n(A×B)=mnn(A\times B)=mn
    son(A×B)=5.4=20n(A\times B)=5.4=20
  • Question 5
    1 / -0
    n (A ×\times B) =
    Solution

  • Question 6
    1 / -0
    Let A and B be finite sets containing m and n elements respectively. The number of relations that can be defined from A and B is:
    Solution
    Here, O(A)=mO(A)=m and O(B)=nO(B)=n.
    Hence O(A×B)=mnO(A×B)=mn
    Since every subset of A×BA×B is a relation from AA to BB, therefore, number of relations from A to B is equal to the number of the subsets of A×BA×B, i.e.,  2mn2^{m{n}}
  • Question 7
    1 / -0
    Which of the following statements is true?
    Solution
    Since, Origin is the point of intersection of xx and y,y, we can say that option DD is correct.
  • Question 8
    1 / -0
    Let A be a finite set containing n distinct elements. The number of relations that can be defined on A is:
    Solution
    Since AA contains nn distinct elements, therefore, A×AA×A contains n×n=n2n×n=n^2 distinct elements. since every subset of A×AA×A is a relation on AA., therefore, number of relations on AA is equal to the order of the power set of A×AA×A, is equal to the order of the power set of A×AA×A, i.e., 2n22^{n^{2}}
  • Question 9
    1 / -0
    If A == {1, 2}, B == {3, 4}, then A×\timesB ==
    Solution

    Step -1: Define the Cartesian product.{\textbf{Step -1: Define the Cartesian product.}}

                   Cartesian product: If A and B are two non empty sets, then {\text{Cartesian product: If }}A{\text{ and }}B{\text{ are two non empty sets, then }} 

                   Cartesian product A×B is set of all ordered pairs (a,b){\text{Cartesian product }}A \times B{\text{ is set of all ordered pairs }}\left( {a,b} \right) such that aA and bB.{\text{such that }}a \in A{\text{ and }}b \in B.

    Step -2: Find the Cartesian product of given sets.{\textbf{Step -2: Find the Cartesian product of given sets.}}

                   We have given,{\text{We have given,}} 

                   A={1,2}A = \left\{ {1,2} \right\} and{\text{and}} B={3,4}B = \left\{ {3,4} \right\}

                   So,{\text{So,}} A×B={(1,3),(1,4),(2,3),(2,4)}A \times B = \left\{ {\left( {1,3} \right),\left( {1,4} \right),\left( {2,3} \right),\left( {2,4} \right)} \right\}

    Hence, option A. {(1,3),(1,4),(2,3),(2,4)}{\textbf{Hence, option A. }}\left\{ \mathbf{\left( {1,3} \right),\left( {1,4} \right),\left( {2,3} \right),\left( {2,4} \right)} \right\} is correct answer.{\textbf{is correct answer.}}

  • Question 10
    1 / -0
    Which one of the statement is false ?
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now