Step -1: Define the Cartesian product. {\textbf{Step -1: Define
the Cartesian product.}} Step -1: Define the Cartesian product.
Cartesian product: If A and B are two non empty sets, then {\text{Cartesian product:
If }}A{\text{ and }}B{\text{ are two non empty sets, then }} Cartesian product: If A and B are two non empty sets, then
Cartesian product A × B is set of all ordered pairs ( a , b ) {\text{Cartesian product }}A \times B{\text{ is set
of all ordered pairs }}\left( {a,b} \right) Cartesian product A × B is set of all ordered pairs ( a , b ) such that a ∈ A and b ∈ B . {\text{such that }}a \in A{\text{ and }}b \in B. such that a ∈ A and b ∈ B .
Step -2: Find the Cartesian product of given sets. {\textbf{Step -2: Find the
Cartesian product of given sets.}} Step -2: Find the Cartesian product of given sets.
We have given, {\text{We have given,}} We have given,
A = { 1 , 2 } A = \left\{ {1,2} \right\} A = { 1 , 2 } and {\text{and}} and B = { 3 , 4 } B = \left\{ {3,4} \right\} B = { 3 , 4 }
So, {\text{So,}} So, A × B = { ( 1 , 3 ) , ( 1 , 4 ) , ( 2 , 3 ) , ( 2 , 4 ) } A \times B = \left\{ {\left( {1,3} \right),\left(
{1,4} \right),\left( {2,3} \right),\left( {2,4} \right)} \right\} A × B = { ( 1 , 3 ) , ( 1 , 4 ) , ( 2 , 3 ) , ( 2 , 4 ) }
Hence, option A. { ( 1 , 3 ) , ( 1 , 4 ) , ( 2 , 3 ) , ( 2 , 4 ) } {\textbf{Hence,
option A. }}\left\{ \mathbf{\left( {1,3} \right),\left( {1,4} \right),\left(
{2,3} \right),\left( {2,4} \right)} \right\} Hence, option A. { ( 1 , 3 ) , ( 1 , 4 ) , ( 2 , 3 ) , ( 2 , 4 ) } is correct answer. {\textbf{is correct answer.}} is correct answer.