Self Studies

Relations and Functions Test - 32

Result Self Studies

Relations and Functions Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Determine all ordered pairs that satisfy (xy)2+x2=25(x - y)^{2} + x^{2} = 25, where xx and yy are integers and x0x \geq 0. Find the number of different values of yy that occur
    Solution
    (xy) 2+x2=25{ \left( x-y \right)  }^{ 2 }+{ x }^{ 2 }=25
    Now, 32+42=52{ 3 }^{ 2 }+{ 4 }^{ 2 }={ 5 }^{ 2 }
    9+16=259+16=25
    \therefore There are 2 possibilities:
    I.(xy) 2=9I.{ \left( x-y \right)  }^{ 2 }=9 and x2=16{ x }^{ 2 }=16
    x=±4\therefore x=\pm 4 and xy=±3x-y=\pm 3
    (i).xy=3(4,1)\left( i \right) .x-y=3\Rightarrow \left( 4,1 \right) and (4,7)\left( -4,-7 \right)
    (ii).xy=3(4,7)\left( ii \right) .x-y=-3\Rightarrow \left( 4,7 \right) and (4,1)\left( -4,-1 \right)
    II.(xy) 2=16II.{ \left( x-y \right)  }^{ 2 }=16 and x2=9{ x }^{ 2 }=9
    x=±3\therefore x=\pm 3 and xy=±4x-y=\pm 4
    (i).xy=4(3,1)\left( i \right) .x-y=4\Rightarrow \left( 3,-1 \right) and (3,7)\left( -3,-7 \right)
    (ii).xy=4(3,7)\left( ii \right) .x-y=-4\Rightarrow \left( 3,7 \right) and (3,1)\left( -3,-1 \right)
    \therefore Different values of y are 1,1,7,71,-1,7,-7
    4\therefore 4 different values of y occur.
  • Question 2
    1 / -0
    Express ba5\dfrac {b}{a^{5}} in terms of tt given that a=t3a = \sqrt [3]{t} and b=t2b = t^{2}.
    Solution
    b=t2,a=t3b = t^2, a = \sqrt[3] {t}
    a5=t53=t53\Rightarrow a^5 = \sqrt[3] {t^5} = t^{\frac{5}{3}}
    ba5=t2t53\therefore \cfrac{b}{a^5} = \cfrac{t^2}{t^{\frac{5}{3}}}
    =t253=t13=t^{2-\frac{5}{3}} = t^{\frac{1}{3}}
  • Question 3
    1 / -0
    If f(x)=x2xf(x) = x^{2} - x and g(x)=3x+2g(x) = 3x + 2, what is g(f(1))2g(f(1)) - 2?
    Solution
    Given: f(x)=x2x,g(x)=3x+2f(x)=x^2-x, g(x)=3x+2
    g(f(1))2=?g(f(1))-2=?
    So, f(1)=(1)21=0f(1)=(1)^2-1=0
    g(0)=3(0)+2=2g(0)=3(0)+2=2
    Therefore, g(f(1))2=22=0g(f(1))-2=2-2=0
  • Question 4
    1 / -0
    f(x)=x1xf(x)=x-\dfrac{1}{x}, then f(1x)=f(\dfrac{1}{x})=
    I. f(x)f(x)
    II. f(x)f(-x)
    III. f(x)-f(x)
    IV. 1f(x)\dfrac{1}{f(x)}
    Solution
    f(x)=x1xf(x)=x-\dfrac{1}{x}
    f(1x)=1xxf\left(\dfrac{1}{x}\right)=\dfrac{1}{x}-x (substituting 1x\dfrac{1}{x} at the place of x)
    =(x1x)=-\left(x-\dfrac{1}{x}\right)
    =f(x)=-f(x)


    f(1x)=1xxf\left(\dfrac{1}{x}\right)=\dfrac{1}{x}-x
    =(1x)+(x)=f(x)=-\left(-\dfrac{1}{x}\right)+(-x)=f(-x)
    II\therefore II & IIIIII.
  • Question 5
    1 / -0
    If f(x)=3x+5f(x) = 3x + 5 and f(g(x))=6x4f(g(x)) = 6x - 4, what is g(x)g(x)?
    Solution
    Since f(x)=3x+5f(x)=3x+5 then f(g(x))=3g(x)+5f(g(x))=3g(x)+5    .........(1)
    Also it is given that f(g(x))=6x4f(g(x))=6x-4       ..........(2)
    Therefore, equate equations (1) and (2) as follows:
    3g(x)=6x93g(x)=6x-9
    3g(x)=3(2x3)\therefore 3g(x)=3(2x-3)
    g(x)=2x3\therefore g(x)=2x-3
    Hence, g(x)=2x3g(x)=2x-3.
  • Question 6
    1 / -0
    What positive value(s) of x, less than 360o360^o, will give a minimum value for 4 - 2 sin x cos x?
    Solution
    • 42sinxcosx=4sin2x4-2sinxcosx = 4-sin2x , It will be minimum if sin2xsin2x is maximum
    • The maximum value of sin2xsin2x is 11 and occurs at 2x=90,4502x = 90,450
    • Which implies x=45,225x=45 , 225
    • Therefore the correct option is EE

  • Question 7
    1 / -0
    If f(x)=x+1x1f(x)=\dfrac{x+1}{x-1}, what is the value of f(f(f(f((35))))f(f(f(f((\frac{3}{5}))))?
    Solution
    f(x)=x+1x1f(x)=\dfrac{x+1}{x-1}
    f(35)=35+1351=8525=4f\left(\dfrac{3}{5}\right)=\dfrac{\dfrac{3}{5}+1}{\dfrac{3}{5}-1}=\dfrac{\dfrac{8}{5}}{\dfrac{-2}{5}}=-4
    f(f(35))=f(35)+1f(35)1=4+141=35f(f\left(\dfrac{3}{5}\right))=\dfrac{f\left(\dfrac{3}{5}\right)+1}{f\left(\dfrac{3}{5}\right)-1}=\dfrac{-4+1}{-4-1}=\dfrac{-3}{-5}
    f(f(f(35)))=35+1351=4f(f(f(\dfrac{3}{5})))=\dfrac{\dfrac{3}{5}+1}{\dfrac{3}{5}-1}=-4
    f(f(f(f(35))))=35=0.6f(f(f(f(\dfrac{3}{5}))))=\dfrac{3}{5}=0.6.
  • Question 8
    1 / -0
    In the problem below, f(x)=x2f(x)={x}^{2} and g(x)=4x2g(x)=4x-2
    Find the following function: (f+g)(x)(f+g)(x)
    Solution
    Given, f(x)=x2f(x)={x}^{2} and g(x)=4x2g(x)=4x-2
    We need to find (f+g)(x)(f+g)(x)
    (f+g)(x)=f(x)+g(x)=x2+4x2\therefore (f+g)(x) = f(x)+g(x) = {x}^{2}+4x-2
  • Question 9
    1 / -0
    If pq>0p - q > 0, which of the following is true?
    Solution
    • Given pq>0p-q>0
    • If q=0q=0 , then p0>0p-0>0 , which gives p>0p>0
    • Therefore option DD is correct
  • Question 10
    1 / -0
    If f(x)=3x2f(x) = 3x - 2 and g(x)=7,f[g(x)]=g(x) = 7, f[g(x)] =
    Solution
    Given, f(x)=3x2f(x)=3x-2 and g(x)=7g(x)=7
    So, we get f(g(x))=f(7)f(g(x))=f(7)
    =3(7)2=3(7)-2
    =212=21-2
    =19=19
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now