`
Self Studies

Relations and Functions Test - 32

Result Self Studies

Relations and Functions Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Determine all ordered pairs that satisfy $$(x - y)^{2} + x^{2} = 25$$, where $$x$$ and $$y$$ are integers and $$x \geq 0$$. Find the number of different values of $$y$$ that occur
    Solution
    $${ \left( x-y \right)  }^{ 2 }+{ x }^{ 2 }=25$$
    Now, $${ 3 }^{ 2 }+{ 4 }^{ 2 }={ 5 }^{ 2 }$$
    $$9+16=25$$
    $$\therefore $$There are 2 possibilities:
    $$I.{ \left( x-y \right)  }^{ 2 }=9$$ and $${ x }^{ 2 }=16$$
    $$\therefore x=\pm 4$$ and $$x-y=\pm 3$$
    $$\left( i \right) .x-y=3\Rightarrow \left( 4,1 \right) $$ and $$\left( -4,-7 \right) $$
    $$\left( ii \right) .x-y=-3\Rightarrow \left( 4,7 \right) $$ and $$\left( -4,-1 \right) $$
    $$II.{ \left( x-y \right)  }^{ 2 }=16$$ and $${ x }^{ 2 }=9$$
    $$\therefore x=\pm 3$$ and $$x-y=\pm 4$$
    $$\left( i \right) .x-y=4\Rightarrow \left( 3,-1 \right) $$ and $$\left( -3,-7 \right) $$
    $$\left( ii \right) .x-y=-4\Rightarrow \left( 3,7 \right) $$ and $$\left( -3,-1 \right) $$
    $$\therefore $$ Different values of y are $$1,-1,7,-7$$
    $$\therefore 4$$ different values of y occur.
  • Question 2
    1 / -0
    Express $$\dfrac {b}{a^{5}} $$ in terms of $$t$$ given that $$a = \sqrt [3]{t}$$ and $$b = t^{2}$$.
    Solution
    $$b = t^2, a = \sqrt[3] {t}$$
    $$\Rightarrow a^5 = \sqrt[3] {t^5} = t^{\frac{5}{3}}$$
    $$\therefore \cfrac{b}{a^5} = \cfrac{t^2}{t^{\frac{5}{3}}}$$
    $$=t^{2-\frac{5}{3}} = t^{\frac{1}{3}}$$
  • Question 3
    1 / -0
    If $$f(x) = x^{2} - x$$ and $$g(x) = 3x + 2$$, what is $$g(f(1)) - 2$$?
    Solution
    Given: $$f(x)=x^2-x, g(x)=3x+2$$
    $$g(f(1))-2=?$$
    So, $$f(1)=(1)^2-1=0$$
    $$g(0)=3(0)+2=2$$
    Therefore, $$g(f(1))-2=2-2=0$$
  • Question 4
    1 / -0
    $$f(x)=x-\dfrac{1}{x}$$, then $$f(\dfrac{1}{x})=$$
    I. $$f(x)$$
    II. $$f(-x)$$
    III. $$-f(x)$$
    IV. $$\dfrac{1}{f(x)}$$
    Solution
    $$f(x)=x-\dfrac{1}{x}$$
    $$f\left(\dfrac{1}{x}\right)=\dfrac{1}{x}-x$$ (substituting $$\dfrac{1}{x}$$ at the place of x)
    $$=-\left(x-\dfrac{1}{x}\right)$$
    $$=-f(x)$$


    $$f\left(\dfrac{1}{x}\right)=\dfrac{1}{x}-x$$
    $$=-\left(-\dfrac{1}{x}\right)+(-x)=f(-x)$$
    $$\therefore II$$ & $$III$$.
  • Question 5
    1 / -0
    If $$f(x) = 3x + 5$$ and $$f(g(x)) = 6x - 4$$, what is $$g(x)$$?
    Solution
    Since $$f(x)=3x+5$$ then $$f(g(x))=3g(x)+5$$    .........(1)
    Also it is given that $$f(g(x))=6x-4$$       ..........(2)
    Therefore, equate equations (1) and (2) as follows:
    $$3g(x)=6x-9$$
    $$\therefore 3g(x)=3(2x-3)$$
    $$\therefore g(x)=2x-3$$
    Hence, $$g(x)=2x-3$$.
  • Question 6
    1 / -0
    What positive value(s) of x, less than $$360^o$$, will give a minimum value for 4 - 2 sin x cos x?
    Solution
    • $$4-2sinxcosx = 4-sin2x$$ , It will be minimum if $$sin2x$$ is maximum
    • The maximum value of $$sin2x$$ is $$1$$ and occurs at $$2x = 90,450$$
    • Which implies $$x=45 , 225$$
    • Therefore the correct option is $$E$$

  • Question 7
    1 / -0
    If $$f(x)=\dfrac{x+1}{x-1}$$, what is the value of $$f(f(f(f((\frac{3}{5}))))$$?
    Solution
    $$f(x)=\dfrac{x+1}{x-1}$$
    $$f\left(\dfrac{3}{5}\right)=\dfrac{\dfrac{3}{5}+1}{\dfrac{3}{5}-1}=\dfrac{\dfrac{8}{5}}{\dfrac{-2}{5}}=-4$$
    $$f(f\left(\dfrac{3}{5}\right))=\dfrac{f\left(\dfrac{3}{5}\right)+1}{f\left(\dfrac{3}{5}\right)-1}=\dfrac{-4+1}{-4-1}=\dfrac{-3}{-5}$$
    $$f(f(f(\dfrac{3}{5})))=\dfrac{\dfrac{3}{5}+1}{\dfrac{3}{5}-1}=-4$$
    $$f(f(f(f(\dfrac{3}{5}))))=\dfrac{3}{5}=0.6$$.
  • Question 8
    1 / -0
    In the problem below, $$f(x)={x}^{2}$$ and $$g(x)=4x-2$$
    Find the following function: $$(f+g)(x)$$
    Solution
    Given, $$f(x)={x}^{2}$$ and $$g(x)=4x-2$$
    We need to find $$(f+g)(x)$$
    $$\therefore (f+g)(x) = f(x)+g(x) = {x}^{2}+4x-2$$
  • Question 9
    1 / -0
    If $$p - q > 0$$, which of the following is true?
    Solution
    • Given $$p-q>0$$
    • If $$q=0$$ , then $$p-0>0$$ , which gives $$p>0$$
    • Therefore option $$D$$ is correct
  • Question 10
    1 / -0
    If $$f(x) = 3x - 2$$ and $$g(x) = 7, f[g(x)] =$$
    Solution
    Given, $$f(x)=3x-2$$ and $$g(x)=7$$
    So, we get $$f(g(x))=f(7)$$
    $$=3(7)-2$$
    $$=21-2$$
    $$=19$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now