Self Studies

Relations and Functions Test - 45

Result Self Studies

Relations and Functions Test - 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If f(x)=11xf(x)=1-\dfrac {1}{x}, then f[f(1x ) ] f\left[ f\left( \dfrac { 1 }{ x }  \right)  \right] is
    Solution

  • Question 2
    1 / -0
    If A={2,3,5},B={4,6,8}A=\left\{ 2,3,5 \right\} ,B=\left\{ 4,6,8 \right\} , then the relation from AA into BB is 
  • Question 3
    1 / -0
    If f(x)=axax+a(a>0)f(x)=\dfrac{a^{x}}{a^{x}+\sqrt{a}}(a>0), then r=12n12f(r2n)\sum_{r=1}^{2n-1}{2f\left(\dfrac{r}{2n}\right)} is equal to 
    Solution
     Solution f(x)=axax+a(a>0)x=12n12f(r2n)2f(12n)+2f(22n)++2f(2n22n)+2f(2n12n)2[f(12n)+f(22n)++f(n2n)+f(n+12n)++f(2n12n)] \begin{aligned} \text { Solution } &-f(x)=\frac{a^{x}}{a^{x}+\sqrt{a}}(a>0) \\ & \Rightarrow \sum_{x=1}^{2 n-1} 2 f\left(\frac{r}{2 n}\right) \\ & \Rightarrow 2 f\left(\frac{1}{2 n}\right)+2 f\left(\frac{2}{2 n}\right)+\cdots+2 f\left(\frac{2 n-2}{2 n}\right)+2 f\left(\frac{2 n-1}{2 n}\right) \\ & \Rightarrow 2\left[f\left(\frac{1}{2 n}\right)+f\left(\frac{2}{2 n}\right)+\cdots+f\left(\frac{n}{2 n}\right)+f\left(\frac{n+1}{2 n}\right)+\cdots+f\left(\frac{2 n-1}{2 n}\right)\right] \end{aligned} (1)



    Now, f(x)+f(1x)=axax+a+aa+ax=ax+aax+a=1(2)\begin{aligned} f(x)+f(1-x) &=\frac{a^{x}}{a^{x}+\sqrt{a}}+\frac{\sqrt{a}}{\sqrt{a}+a^{x}} \\ &=\frac{a^{x}+\sqrt{a}}{a^{x}+\sqrt{a}}=1 \quad-(2) \end{aligned}



     Using (2) we get 2[f(12n)+f(2n12n)++f(n12n)+f(n+12n)]+2f(n2n)2(n1)+2f(12)(3) Now put x=12 in f(x)+f(1x)f(12)+f(12)=1f(12)=12 \begin{array}{c} \text { Using (2) we get } \\ \Rightarrow 2\left[f\left(\frac{1}{2 n}\right)+f\left(\frac{2 n-1}{2 n}\right)+\ldots+f\left(\frac{n-1}{2 n}\right)+f\left(\frac{n+1}{2 n}\right)\right]+2 f\left(\frac{n}{2 n}\right) \\ \Rightarrow 2(n-1)+2 f\left(\frac{1}{2}\right)-(3) \\ \text { Now put } x=\frac{1}{2} \text { in } f(x)+f(1-x) \\ \Rightarrow f\left(\frac{1}{2}\right)+f\left(\frac{1}{2}\right)=1 \\ \Rightarrow f\left(\frac{1}{2}\right)=\frac{1}{2} \end{array}



     from equation 3n=12n12f(n2n)=2(n1)+12=2(n1+12)=2n1 then ,(c) is the correct option.  \begin{array}{l} \text { from equation } 3 \\ \Rightarrow \sum_{n=1}^{2 n-1} 2 f\left(\frac{n}{2 n}\right)=2(n-1)+\frac{1}{2} \\ =2\left(n-1+\frac{1}{2}\right) \\ =2 n-1 \\ \text { then },(c) \text { is the correct option. } \end{array}
  • Question 4
    1 / -0

    Directions For Questions

    Let 3f(x)+2f(x)=x2+x3f(x)+2f(-x)=x^{2}+x.

    ...view full instructions

    Number real roots of f(f(x))=0f(f(x))=0 is-
    Solution
    3f(x)+2f(x)=x2+x3 f(x)+2 f(-x)=x^{2}+x
    replace xx by x-x in equation
    (1) 3f(x)+2f(x)=x2x\therefore \quad 3 f(-x)+2 f(x)=x^{2}-x
    Multiply equation (1) by 2 and (2) by 3 and sulutract
    2{3f(x)+2f(x)}3{3f(x)+2f(x)}=2x2+x3x2+3x6f(x)+4f(x)9f(x)6f(x)=4xx25f(x)=4xx2\begin{aligned} & 2\{3 f(x)+2 f(-x)\}-3\{3 f(-x)+2 f(x)\}=2 x^{2}+x-3 x^{2}+3 x \\ \Rightarrow & 6 f(x)+4 f(-x)-9 f(-x)-6 f(x)=4 x-x^{2} \\ \Rightarrow &-5 f(-x)=4 x-x^{2} \end{aligned}
    5f(x)=x24x\Rightarrow \quad 5 f(-x)=x^{2}-4 x(3)
    replace (x)(-x) by xx in equation (3)
    5f(x)=x2+4xf(x)=15(x2+4x)\begin{aligned} & 5 f(x)=x^{2}+4 x \\ \therefore & f(x)=\frac{1}{5}\left(x^{2}+4 x\right) \end{aligned}
    f(f(x))=0f(f(x))=0 if f(x)=0f(x)=0 and f(x)=4f(x)=-4
    For, f(x)=0f(x)=0 at x=4x=-4 and x=0x=0
    For, f(x)=4f(x)=-4
    $$\Rightarrow \frac{x^{2}}{5}+\frac{4}{5} x=-4 \Rightarrow x^{2}+4 x+20=0$
    $x^{2}+4 x+20$$ has no real roots.
    Real roots of f(f(x))=0f(f(x))=0 are
    x=4x=-4 and x=0x=0
    so Answer: option (c).

  • Question 5
    1 / -0
    If a set AA has nn elements then the number of relations defined on AA is 
    Solution

  • Question 6
    1 / -0
    If A= {a, b} then possible number of relation on the set A.
    Solution

  • Question 7
    1 / -0
    If n(A)=4, n(B)=3, n(A×B×C)=24,thenn(C)n(A\times B\times C)=24,then\quad n(C) is equal to 
    Solution
    n(A)=4  n(B)=3  n(A×B×C)=24n\left(A\right)=4\,\,n\left(B\right)=3\,\,n\left(A\times B\times C\right)=24
    We have n(A×B×C)=n(A)×n(B)×n(C)n\left(A\times B\times C\right)=n\left(A\right)\times n\left(B\right)\times n\left(C\right)
    24=4×3×n(C)\Rightarrow 24=4\times 3\times n\left(C\right)
    n(C)=2412=2\therefore n\left(C\right)=\dfrac{24}{12}=2

  • Question 8
    1 / -0
    Let A and B be two sets such that A×B={(a,1),(b,3),(a,3),(b,1),(a,2),(b,2) },A\times B=\left\{ \left( a,1 \right) ,\left( b,3 \right) ,\left( a,3 \right) ,\left( b,1 \right) ,\left( a,2 \right) ,\left( b,2 \right)  \right\} , then 
    Solution
    AA is the first  element in  the cartesian product A×B={a,b,a,b,a,b}A\times B=\left\{a\,,b\,,a\,,b\,,a\,,b\right\}
    and BB is the second element in  the cartesian product A×B={1,3,3,1,2,2}A\times B=\left\{1,\,3\,,3\,,1\,,2\,,2\right\}
    \therefore elements of A={a,b}A=\left\{a,b\right\} and B={1,2,3}B=\left\{1\,,2\,,3\right\}
  • Question 9
    1 / -0
    A relation R is defined from {2,3,4,5} to {3,6,7,10} by XRY \Leftrightarrow X is relatively prime to Y, then domain of R is 
    Solution
    Given:
    From {2,3,4,5}\left\{2,3,4,5\right\} to {3,6,7,10}\left\{3,6,7,10\right\}

    xx is related to yy iff xx is relatively prime to yy

    22 is relatively prime to 3,73,7

    33 is relatively prime to 7,107,10

    44 is relatively prime to 3,73,7

    55 is relatively prime to 3,6,73,6,7

    So, domain of RR is {2,3,4,5}\left\{2,3,4,5\right\}
  • Question 10
    1 / -0
    If p(x)=x15,x=1,2,3,4,5=0p(x)=\dfrac{x}{15}, x=1,2,3,4,5=0 otherwise, then p(x=1 or 2)p(x=1\ or\ 2) is 
    Solution

    P(x)=x15,x=1,2,3,4,5=0 other wise p(x=1or2)=p(x=1)+p(x=2)=115+215=15 \begin{array}{l} P(x)=\frac{x}{15}, x=1,2,3,4,5 \\ =0 \text { other wise } \\ \qquad \begin{aligned} p(x=1 \operatorname{or} 2) &=p(x=1)+p(x=2) \\ &=\frac{1}{15}+\frac{2}{15}=\frac{1}{5} \end{aligned} \end{array}
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now