`
Self Studies

Relations and Functions Test - 45

Result Self Studies

Relations and Functions Test - 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x)=1-\dfrac {1}{x}$$, then $$ f\left[ f\left( \dfrac { 1 }{ x }  \right)  \right] $$ is
    Solution

  • Question 2
    1 / -0
    If $$A=\left\{ 2,3,5 \right\} ,B=\left\{ 4,6,8 \right\} $$, then the relation from $$A$$ into $$B$$ is 
  • Question 3
    1 / -0
    If $$f(x)=\dfrac{a^{x}}{a^{x}+\sqrt{a}}(a>0)$$, then $$\sum_{r=1}^{2n-1}{2f\left(\dfrac{r}{2n}\right)}$$ is equal to 
    Solution
    $$ \begin{aligned} \text { Solution } &-f(x)=\frac{a^{x}}{a^{x}+\sqrt{a}}(a>0) \\ & \Rightarrow \sum_{x=1}^{2 n-1} 2 f\left(\frac{r}{2 n}\right) \\ & \Rightarrow 2 f\left(\frac{1}{2 n}\right)+2 f\left(\frac{2}{2 n}\right)+\cdots+2 f\left(\frac{2 n-2}{2 n}\right)+2 f\left(\frac{2 n-1}{2 n}\right) \\ & \Rightarrow 2\left[f\left(\frac{1}{2 n}\right)+f\left(\frac{2}{2 n}\right)+\cdots+f\left(\frac{n}{2 n}\right)+f\left(\frac{n+1}{2 n}\right)+\cdots+f\left(\frac{2 n-1}{2 n}\right)\right] \end{aligned} $$ (1)



    Now, $$\begin{aligned} f(x)+f(1-x) &=\frac{a^{x}}{a^{x}+\sqrt{a}}+\frac{\sqrt{a}}{\sqrt{a}+a^{x}} \\ &=\frac{a^{x}+\sqrt{a}}{a^{x}+\sqrt{a}}=1 \quad-(2) \end{aligned}$$



    $$ \begin{array}{c} \text { Using (2) we get } \\ \Rightarrow 2\left[f\left(\frac{1}{2 n}\right)+f\left(\frac{2 n-1}{2 n}\right)+\ldots+f\left(\frac{n-1}{2 n}\right)+f\left(\frac{n+1}{2 n}\right)\right]+2 f\left(\frac{n}{2 n}\right) \\ \Rightarrow 2(n-1)+2 f\left(\frac{1}{2}\right)-(3) \\ \text { Now put } x=\frac{1}{2} \text { in } f(x)+f(1-x) \\ \Rightarrow f\left(\frac{1}{2}\right)+f\left(\frac{1}{2}\right)=1 \\ \Rightarrow f\left(\frac{1}{2}\right)=\frac{1}{2} \end{array} $$



    $$ \begin{array}{l} \text { from equation } 3 \\ \Rightarrow \sum_{n=1}^{2 n-1} 2 f\left(\frac{n}{2 n}\right)=2(n-1)+\frac{1}{2} \\ =2\left(n-1+\frac{1}{2}\right) \\ =2 n-1 \\ \text { then },(c) \text { is the correct option. } \end{array} $$
  • Question 4
    1 / -0

    Directions For Questions

    Let $$3f(x)+2f(-x)=x^{2}+x$$.

    ...view full instructions

    Number real roots of $$f(f(x))=0$$ is-
    Solution
    $$3 f(x)+2 f(-x)=x^{2}+x$$
    replace $$x$$ by $$-x$$ in equation
    (1) $$\therefore \quad 3 f(-x)+2 f(x)=x^{2}-x$$
    Multiply equation (1) by 2 and (2) by 3 and sulutract
    $$\begin{aligned} & 2\{3 f(x)+2 f(-x)\}-3\{3 f(-x)+2 f(x)\}=2 x^{2}+x-3 x^{2}+3 x \\ \Rightarrow & 6 f(x)+4 f(-x)-9 f(-x)-6 f(x)=4 x-x^{2} \\ \Rightarrow &-5 f(-x)=4 x-x^{2} \end{aligned}$$
    $$\Rightarrow \quad 5 f(-x)=x^{2}-4 x$$(3)
    replace $$(-x)$$ by $$x$$ in equation (3)
    $$\begin{aligned} & 5 f(x)=x^{2}+4 x \\ \therefore & f(x)=\frac{1}{5}\left(x^{2}+4 x\right) \end{aligned}$$
    $$f(f(x))=0$$ if $$f(x)=0$$ and $$f(x)=-4$$
    For, $$f(x)=0$$ at $$x=-4$$ and $$x=0$$
    For, $$f(x)=-4$$
    $$\Rightarrow \frac{x^{2}}{5}+\frac{4}{5} x=-4 \Rightarrow x^{2}+4 x+20=0$
    $x^{2}+4 x+20$$ has no real roots.
    Real roots of $$f(f(x))=0$$ are
    $$x=-4$$ and $$x=0$$
    so Answer: option (c).

  • Question 5
    1 / -0
    If a set $$A$$ has $$n$$ elements then the number of relations defined on $$A$$ is 
    Solution

  • Question 6
    1 / -0
    If A= {a, b} then possible number of relation on the set A.
    Solution

  • Question 7
    1 / -0
    If n(A)=4, n(B)=3, $$n(A\times B\times C)=24,then\quad n(C)$$ is equal to 
    Solution
    $$n\left(A\right)=4\,\,n\left(B\right)=3\,\,n\left(A\times B\times C\right)=24$$
    We have $$n\left(A\times B\times C\right)=n\left(A\right)\times n\left(B\right)\times n\left(C\right)$$
    $$\Rightarrow 24=4\times 3\times n\left(C\right)$$
    $$\therefore n\left(C\right)=\dfrac{24}{12}=2$$

  • Question 8
    1 / -0
    Let A and B be two sets such that $$A\times B=\left\{ \left( a,1 \right) ,\left( b,3 \right) ,\left( a,3 \right) ,\left( b,1 \right) ,\left( a,2 \right) ,\left( b,2 \right)  \right\} ,$$ then 
    Solution
    $$A$$ is the first  element in  the cartesian product $$A\times B=\left\{a\,,b\,,a\,,b\,,a\,,b\right\}$$
    and $$B$$ is the second element in  the cartesian product $$A\times B=\left\{1,\,3\,,3\,,1\,,2\,,2\right\}$$
    $$\therefore$$ elements of $$A=\left\{a,b\right\}$$ and $$B=\left\{1\,,2\,,3\right\}$$
  • Question 9
    1 / -0
    A relation R is defined from {2,3,4,5} to {3,6,7,10} by XRY $$\Leftrightarrow $$ X is relatively prime to Y, then domain of R is 
    Solution
    Given:
    From $$\left\{2,3,4,5\right\}$$ to $$\left\{3,6,7,10\right\}$$

    $$x$$ is related to $$y$$ iff $$x$$ is relatively prime to $$y$$

    $$2$$ is relatively prime to $$3,7$$

    $$3$$ is relatively prime to $$7,10$$

    $$4$$ is relatively prime to $$3,7$$

    $$5$$ is relatively prime to $$3,6,7$$

    So, domain of $$R$$ is $$\left\{2,3,4,5\right\}$$
  • Question 10
    1 / -0
    If $$p(x)=\dfrac{x}{15}, x=1,2,3,4,5=0$$ otherwise, then $$p(x=1\ or\ 2)$$ is 
    Solution

    $$ \begin{array}{l} P(x)=\frac{x}{15}, x=1,2,3,4,5 \\ =0 \text { other wise } \\ \qquad \begin{aligned} p(x=1 \operatorname{or} 2) &=p(x=1)+p(x=2) \\ &=\frac{1}{15}+\frac{2}{15}=\frac{1}{5} \end{aligned} \end{array} $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now