Self Studies

Relations and F...

TIME LEFT -
  • Question 1
    1 / -0

    lf $$f:R\rightarrow R$$ such that $$f(x+y)-Kxy = f(x)+2y^2$$ for all $$x,y \in R$$ and $$f(1)=2,f(2)=8$$ then $$f(20)-f(10)$$

  • Question 2
    1 / -0

    Vamsi is "X" years old. His sister''s age is $$\tiny \dpi{150} {\color{DarkBlue} 4\frac{1}{2}}$$ times that of Vamsi. Where as his uncle is 30 years older than him. If the total of their ages is 56 years, what is the age of Vamsi?

  • Question 3
    1 / -0

    If $$f(x)$$ is a polynomial function of degree $$n$$ satisfying eqation $$f(x) f(2x) = xf(3x)$$ then $$f(x)$$ is

  • Question 4
    1 / -0

    If $$f(x) = \cos(  \log x)$$ then $$f(x^2)f(y^2)-\dfrac{1}{2} \left [ f(x^2y^2)+f\left ( \dfrac{x^2}{y^2} \right) \right]=$$

  • Question 5
    1 / -0

    Directions For Questions

    Consider the function $$y=\frac{x^{2}+x+d}{x^{2}+2x+d}$$

    ...view full instructions

    What will be the range, when d $$=$$ 0

  • Question 6
    1 / -0

    Let a function $$f(x)$$ satisfies $$f^{2}(x)-f^{2}(y)=4(x-y)$$ and $$f(0)= 2\left ( f\left ( x \right )\geq 0 \right )$$whose domain is $$\left [ a ,\infty  \right )$$ and it is differentiable on $$\left (a ,\infty \right )$$
    The value of $$f(3)$$ is

  • Question 7
    1 / -0

    If $$A=\left \{ 1,2,3 \right \} $$ and $$B=\left \{ 4,5,6 \right \}$$ then which of the following sets are relation from $$A$$ to $$B$$
    (i) $$\displaystyle R_{1}=\left \{ (4,2) (2,6)(5,1)(2,4)\right \}$$
    (ii) $$\displaystyle R_{2}=\left \{ (1,4) (1,5)(3,6)(2,6) (3,4)\right \}$$
    (iii) $$\displaystyle R_{3}=\left \{ (1,5) (2,4)(3,6)\right \}$$
    (iv) $$\displaystyle R_{4}=\left \{ (1,4) (1,5)(1,6)\right \}$$

  • Question 8
    1 / -0

    The number of solution of the equation $$\displaystyle a^{f\left ( x \right )}+g\left ( x \right )=0,$$ where $$\displaystyle a >0, g\left ( x \right )\neq 0$$ and $$\displaystyle g\left ( x \right )$$ has minimum value $$\dfrac14$$, is

  • Question 9
    1 / -0

    Let $$f$$ be a function satisfying $$\displaystyle f(x+y)=f(x)+f(y)$$ for $$x,y\:\epsilon\:R$$. If $$f(1)=k$$ then $$f(n)$$,$$n\:\in\:N$$, is equal to 

  • Question 10
    1 / -0

    If the polynomial satisfies $$f\left( x \right) =\dfrac { 1 }{ 2 } \begin{vmatrix} f\left( x \right)  & f\left( \dfrac { 1 }{ x }  \right) -f\left( x \right)  \\ 1 & f\left( \dfrac { 1 }{ x }  \right)  \end{vmatrix}$$ and $$\displaystyle f \left ( 2 \right ) = 17$$, then the value of $$\displaystyle f\left ( 3 \right )$$ is 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now