Self Studies

Relations and Functions Test - 52

Result Self Studies

Relations and Functions Test - 52
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let R be a relation on the set of integers given by aRba=2k.b aRb \leftrightarrow a = 2^k .b for some integer k.k. Then RR is 
    Solution

  • Question 2
    1 / -0
    Let g(x)=f(logx)+f(2logx)g(x) = f(\log x) + f(2 - \log x) and f(x)<0x(0,3)f''(x) < 0\forall x\in (0, 3). Then find the interval in which g(x)g(x) increases.
    Solution
    Since f"(x)<0,f^{ " }\left( x \right) <0,    f(x)f'\left( x \right) is decreasing function g(x),f(logx ) x+f(2logx ) xg'\left( x \right) , \dfrac { f'\left( \log { x }  \right)  }{ x } +\dfrac { f'\left( 2-\log { x }  \right)  }{ -x }
    1x(f(logx )f(2logx ) )\Rightarrow \dfrac{1}{x} \left( f'\left( \log { x }  \right) -f'\left( 2-\log { x }  \right)  \right)
         g(x)>0g'\left( x \right)>0     ( increasing )
    (f(logx )>f(2logx ) )\Rightarrow \left( f'\left( \log { x }  \right) >f'\left( 2-\log { x }  \right)  \right)
    Since f(x)f'\left( x \right) is decreasing
    logx<2logx\Rightarrow \log x < 2-\log x
         2logx<12\log x<1
         logx<loge\log x< \log e
         x<ex<e
         x(0,e).x\in \left(0,e\right).
    Hence, the answer is x(0,e).x\in \left(0,e\right).


  • Question 3
    1 / -0
    The domain of the function f(x)=x2(ax)(xb),(b>a)f(x) = \frac{x^2}{\sqrt{(a - x)(x-b)}}, (b > a) is
    Solution

  • Question 4
    1 / -0
    Let R be a relation from A={1,2,3,4} A=\{1,2,3,4\} to B={1,3,5}B=\{1,3,5\}such that R=[(a,b):a<b where a\in{A} and b\in{B}].What is RoR1RoR^{-1} equal to
    Solution

  • Question 5
    1 / -0
    COMPREHENSION :
    If (f(x))2×f(1x1+x)=6x,x0,1{\left( {f\left( x \right)} \right)^2} \times f\left( {\frac{{1 - x}}{{1 + x}}} \right) = 6x,x \ne 0,1, then f(x)f(x) is equal to 

    Solution

  • Question 6
    1 / -0
    Let f(2,2)(2,2)f(-2, 2)\rightarrow(-2, 2) be a continuous function given f(x)=f(x2)f(x)=f{(x}^{2}). Given f(0)=12f(0)=\dfrac{1}{2} then the 4f(12)4f(\dfrac{1}{2})
    Solution

  • Question 7
    1 / -0
    If f:RRf:R \to R satisfies f(x+y)=f(x)+f(y)f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) for all x,yRx,y \in R and f(1)=7f\left( 1 \right) = 7, then r=1nf(r)\sum\limits_{r = 1}^n {f\left( r \right)}
    Solution
    f(1)=7\because f(1)=7

    f(2)=f(1+1)=f(1)+f(1)=7+7=14\therefore f(2)=f(1+1)=f(1)+f(1)=7+7=14

    Similarly f(3)=f(1+2)=f(1)+f(2)=7+14=21f(3)=f(1+2)=f(1)+f(2)=7+14=21 

     f(4)=f(1+3)=f(1)+f(3)=7+21=28f(4)=f(1+3)=f(1)+f(3)=7+21=28  and so on 

    f(n)=7+(n1)7=7n\therefore f(n)=7+(n-1)7=7n

    Now, r=1nf(r)=f(1)+f(2)+f(3)+....+f(n)\displaystyle \sum_{ r=1 }^{ n }{ f\left( r \right) } =f(1)+f(2)+f(3)+....+f(n)

             =7+14+21+....+7n=7(1+2+3+....+n)=7+14+21+....+7n=7(1+2+3+....+n)

             =7n(n+1)2=\dfrac{7n(n+1)}{2}
  • Question 8
    1 / -0
    COMPREHENSION :
    If (f(x))2×f(1x1+x)=6x,x0,1{\left( {f\left( x \right)} \right)^2} \times f\left( {\frac{{1 - x}}{{1 + x}}} \right) = 6x,x \ne 0,1, The domain of f(x)f(x) is
    Solution

  • Question 9
    1 / -0
    If f(x)=1+x+x22+...+x100100f(x)=1+x+\frac{x^2}{2} +...+\frac{x^{100}}{100}, then f'(1) is equal to
    Solution

  • Question 10
    1 / -0
    Let 3f(x)2f(1x)=x3f(x)-2f\left(\dfrac {1}{x}\right)=x, then f(2)f'(2) is equal to
    Solution

    Differentiate 3f(x)2f(1x)=x3f\left( x \right) - 2f\left( {\dfrac{1}{x}} \right) = x with respect to xx,


    3f(x)2f(1x)(1x2)=13f'\left( x \right) - 2f'\left( {\dfrac{1}{x}} \right)\left( { - \dfrac{1}{{{x^2}}}} \right) = 1


    3f(x)+2x2f(1x)=13f'\left( x \right) + \dfrac{2}{{{x^2}}}f'\left( {\dfrac{1}{x}} \right) = 1                       (1)


    Put x=2x = 2 in equation (1),


    3f(2)+222f(12)=13f'\left( 2 \right) + \dfrac{2}{{{2^2}}}f'\left( {\dfrac{1}{2}} \right) = 1


    3f(2)+12f(12)=13f'\left( 2 \right) + \dfrac{1}{2}f'\left( {\dfrac{1}{2}} \right) = 1                         (2)


    Put x=12x = \dfrac{1}{2} in equation (1),


    3f(12)+2(12)2f(112)=13f'\left( {\dfrac{1}{2}} \right) + \dfrac{2}{{{{\left( {\dfrac{1}{2}} \right)}^2}}}f'\left( {\dfrac{1}{{\dfrac{1}{2}}}} \right) = 1


    3f(12)+214f(2)=13f'\left( {\dfrac{1}{2}} \right) + \dfrac{2}{{\dfrac{1}{4}}}f'\left( 2 \right) = 1


    3f(12)+8f(2)=13f'\left( {\dfrac{1}{2}} \right) + 8f'\left( 2 \right) = 1


    3f(12)=18f(2)3f'\left( {\dfrac{1}{2}} \right) = 1 - 8f'\left( 2 \right)


    f(12)=1383f(2)f'\left( {\dfrac{1}{2}} \right) = \dfrac{1}{3} - \dfrac{8}{3}f'\left( 2 \right)


    Substitute above value in equation (2),


    3f(2)+12(1383f(2))=13f'\left( 2 \right) + \dfrac{1}{2}\left( {\dfrac{1}{3} - \dfrac{8}{3}f'\left( 2 \right)} \right) = 1


    3f(2)+1643f(2)=13f'\left( 2 \right) + \dfrac{1}{6} - \dfrac{4}{3}f'\left( 2 \right) = 1


    3f(2)43f(2)=1163f'\left( 2 \right) - \dfrac{4}{3}f'\left( 2 \right) = 1 - \dfrac{1}{6}


    9f(2)4f(2)3=616\dfrac{{9f'\left( 2 \right) - 4f'\left( 2 \right)}}{3} = \dfrac{{6 - 1}}{6}


    5f(2)=525f'\left( 2 \right) = \dfrac{5}{2}


    f(2)=12f'\left( 2 \right) = \dfrac{1}{2}


    Therefore, the value of f(2)f'\left( 2 \right) is 12\dfrac{1}{2}.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now