Differentiate 3 f ( x ) − 2 f ( 1 x ) = x 3f\left( x \right) - 2f\left( {\dfrac{1}{x}} \right) = x 3 f ( x ) − 2 f ( x 1 ) = x with respect to x x x ,
3 f ′ ( x ) − 2 f ′ ( 1 x ) ( − 1 x 2 ) = 1 3f'\left( x \right) - 2f'\left( {\dfrac{1}{x}} \right)\left( { - \dfrac{1}{{{x^2}}}} \right) = 1 3 f ′ ( x ) − 2 f ′ ( x 1 ) ( − x 2 1 ) = 1
3 f ′ ( x ) + 2 x 2 f ′ ( 1 x ) = 1 3f'\left( x \right) + \dfrac{2}{{{x^2}}}f'\left( {\dfrac{1}{x}} \right) = 1 3 f ′ ( x ) + x 2 2 f ′ ( x 1 ) = 1 (1)
Put x = 2 x = 2 x = 2 in equation (1),
3 f ′ ( 2 ) + 2 2 2 f ′ ( 1 2 ) = 1 3f'\left( 2 \right) + \dfrac{2}{{{2^2}}}f'\left( {\dfrac{1}{2}} \right) = 1 3 f ′ ( 2 ) + 2 2 2 f ′ ( 2 1 ) = 1
3 f ′ ( 2 ) + 1 2 f ′ ( 1 2 ) = 1 3f'\left( 2 \right) + \dfrac{1}{2}f'\left( {\dfrac{1}{2}} \right) = 1 3 f ′ ( 2 ) + 2 1 f ′ ( 2 1 ) = 1 (2)
Put x = 1 2 x = \dfrac{1}{2} x = 2 1 in equation (1),
3 f ′ ( 1 2 ) + 2 ( 1 2 ) 2 f ′ ( 1 1 2 ) = 1 3f'\left( {\dfrac{1}{2}} \right) + \dfrac{2}{{{{\left( {\dfrac{1}{2}} \right)}^2}}}f'\left( {\dfrac{1}{{\dfrac{1}{2}}}} \right) = 1 3 f ′ ( 2 1 ) + ( 2 1 ) 2 2 f ′ ⎝ ⎛ 2 1 1 ⎠ ⎞ = 1
3 f ′ ( 1 2 ) + 2 1 4 f ′ ( 2 ) = 1 3f'\left( {\dfrac{1}{2}} \right) + \dfrac{2}{{\dfrac{1}{4}}}f'\left( 2 \right) = 1 3 f ′ ( 2 1 ) + 4 1 2 f ′ ( 2 ) = 1
3 f ′ ( 1 2 ) + 8 f ′ ( 2 ) = 1 3f'\left( {\dfrac{1}{2}} \right) + 8f'\left( 2 \right) = 1 3 f ′ ( 2 1 ) + 8 f ′ ( 2 ) = 1
3 f ′ ( 1 2 ) = 1 − 8 f ′ ( 2 ) 3f'\left( {\dfrac{1}{2}} \right) = 1 - 8f'\left( 2 \right) 3 f ′ ( 2 1 ) = 1 − 8 f ′ ( 2 )
f ′ ( 1 2 ) = 1 3 − 8 3 f ′ ( 2 ) f'\left( {\dfrac{1}{2}} \right) = \dfrac{1}{3} - \dfrac{8}{3}f'\left( 2 \right) f ′ ( 2 1 ) = 3 1 − 3 8 f ′ ( 2 )
Substitute above value in equation (2),
3 f ′ ( 2 ) + 1 2 ( 1 3 − 8 3 f ′ ( 2 ) ) = 1 3f'\left( 2 \right) + \dfrac{1}{2}\left( {\dfrac{1}{3} - \dfrac{8}{3}f'\left( 2 \right)} \right) = 1 3 f ′ ( 2 ) + 2 1 ( 3 1 − 3 8 f ′ ( 2 ) ) = 1
3 f ′ ( 2 ) + 1 6 − 4 3 f ′ ( 2 ) = 1 3f'\left( 2 \right) + \dfrac{1}{6} - \dfrac{4}{3}f'\left( 2 \right) = 1 3 f ′ ( 2 ) + 6 1 − 3 4 f ′ ( 2 ) = 1
3 f ′ ( 2 ) − 4 3 f ′ ( 2 ) = 1 − 1 6 3f'\left( 2 \right) - \dfrac{4}{3}f'\left( 2 \right) = 1 - \dfrac{1}{6} 3 f ′ ( 2 ) − 3 4 f ′ ( 2 ) = 1 − 6 1
9 f ′ ( 2 ) − 4 f ′ ( 2 ) 3 = 6 − 1 6 \dfrac{{9f'\left( 2 \right) - 4f'\left( 2 \right)}}{3} = \dfrac{{6 - 1}}{6} 3 9 f ′ ( 2 ) − 4 f ′ ( 2 ) = 6 6 − 1
5 f ′ ( 2 ) = 5 2 5f'\left( 2 \right) = \dfrac{5}{2} 5 f ′ ( 2 ) = 2 5
f ′ ( 2 ) = 1 2 f'\left( 2 \right) = \dfrac{1}{2} f ′ ( 2 ) = 2 1
Therefore, the value of f ′ ( 2 ) f'\left( 2 \right) f ′ ( 2 ) is 1 2 \dfrac{1}{2} 2 1 .