`
Self Studies

Relations and Functions Test - 52

Result Self Studies

Relations and Functions Test - 52
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let R be a relation on the set of integers given by $$ aRb \leftrightarrow a = 2^k .b $$ for some integer $$k.$$ Then $$R$$ is 
    Solution

  • Question 2
    1 / -0
    Let $$g(x) = f(\log x) + f(2 - \log x)$$ and $$f''(x) < 0\forall x\in (0, 3)$$. Then find the interval in which $$g(x)$$ increases.
    Solution
    Since $$f^{ " }\left( x \right) <0,$$    $$f'\left( x \right) $$ is decreasing function $$g'\left( x \right) , \dfrac { f'\left( \log { x }  \right)  }{ x } +\dfrac { f'\left( 2-\log { x }  \right)  }{ -x } $$
    $$\Rightarrow \dfrac{1}{x} \left( f'\left( \log { x }  \right) -f'\left( 2-\log { x }  \right)  \right) $$
         $$g'\left( x \right)>0$$     ( increasing )
    $$\Rightarrow \left( f'\left( \log { x }  \right) >f'\left( 2-\log { x }  \right)  \right) $$
    Since $$f'\left( x \right) $$ is decreasing
    $$\Rightarrow \log x < 2-\log x$$
         $$2\log x<1$$
         $$\log x< \log e$$
         $$x<e$$
         $$x\in \left(0,e\right).$$
    Hence, the answer is $$x\in \left(0,e\right).$$


  • Question 3
    1 / -0
    The domain of the function $$f(x) = \frac{x^2}{\sqrt{(a - x)(x-b)}}, (b > a)$$ is
    Solution

  • Question 4
    1 / -0
    Let R be a relation from $$ A=\{1,2,3,4\}$$ to $$B=\{1,3,5\}$$such that R=[(a,b):a<b where a\in{A} and b\in{B}].What is $$RoR^{-1} $$ equal to
    Solution

  • Question 5
    1 / -0
    COMPREHENSION :
    If $${\left( {f\left( x \right)} \right)^2} \times f\left( {\frac{{1 - x}}{{1 + x}}} \right) = 6x,x \ne 0,1$$, then $$f(x)$$ is equal to 

    Solution

  • Question 6
    1 / -0
    Let $$f(-2, 2)\rightarrow(-2, 2)$$ be a continuous function given $$f(x)=f{(x}^{2})$$. Given $$f(0)=\dfrac{1}{2}$$ then the $$4f(\dfrac{1}{2})$$
    Solution

  • Question 7
    1 / -0
    If $$f:R \to R$$ satisfies $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$ for all $$x,y \in R$$ and $$f\left( 1 \right) = 7$$, then $$\sum\limits_{r = 1}^n {f\left( r \right)} $$
    Solution
    $$\because f(1)=7$$

    $$\therefore f(2)=f(1+1)=f(1)+f(1)=7+7=14$$

    Similarly $$f(3)=f(1+2)=f(1)+f(2)=7+14=21$$ 

     $$f(4)=f(1+3)=f(1)+f(3)=7+21=28$$  and so on 

    $$\therefore f(n)=7+(n-1)7=7n$$

    Now, $$\displaystyle \sum_{ r=1 }^{ n }{ f\left( r \right) } =f(1)+f(2)+f(3)+....+f(n)$$

             $$=7+14+21+....+7n=7(1+2+3+....+n)$$

             $$=\dfrac{7n(n+1)}{2}$$
  • Question 8
    1 / -0
    COMPREHENSION :
    If $${\left( {f\left( x \right)} \right)^2} \times f\left( {\frac{{1 - x}}{{1 + x}}} \right) = 6x,x \ne 0,1$$, The domain of $$f(x)$$ is
    Solution

  • Question 9
    1 / -0
    If $$f(x)=1+x+\frac{x^2}{2} +...+\frac{x^{100}}{100}$$, then f'(1) is equal to
    Solution

  • Question 10
    1 / -0
    Let $$3f(x)-2f\left(\dfrac {1}{x}\right)=x$$, then $$f'(2)$$ is equal to
    Solution

    Differentiate $$3f\left( x \right) - 2f\left( {\dfrac{1}{x}} \right) = x$$ with respect to $$x$$,


    $$3f'\left( x \right) - 2f'\left( {\dfrac{1}{x}} \right)\left( { - \dfrac{1}{{{x^2}}}} \right) = 1$$


    $$3f'\left( x \right) + \dfrac{2}{{{x^2}}}f'\left( {\dfrac{1}{x}} \right) = 1$$                       (1)


    Put $$x = 2$$ in equation (1),


    $$3f'\left( 2 \right) + \dfrac{2}{{{2^2}}}f'\left( {\dfrac{1}{2}} \right) = 1$$


    $$3f'\left( 2 \right) + \dfrac{1}{2}f'\left( {\dfrac{1}{2}} \right) = 1$$                         (2)


    Put $$x = \dfrac{1}{2}$$ in equation (1),


    $$3f'\left( {\dfrac{1}{2}} \right) + \dfrac{2}{{{{\left( {\dfrac{1}{2}} \right)}^2}}}f'\left( {\dfrac{1}{{\dfrac{1}{2}}}} \right) = 1$$


    $$3f'\left( {\dfrac{1}{2}} \right) + \dfrac{2}{{\dfrac{1}{4}}}f'\left( 2 \right) = 1$$


    $$3f'\left( {\dfrac{1}{2}} \right) + 8f'\left( 2 \right) = 1$$


    $$3f'\left( {\dfrac{1}{2}} \right) = 1 - 8f'\left( 2 \right)$$


    $$f'\left( {\dfrac{1}{2}} \right) = \dfrac{1}{3} - \dfrac{8}{3}f'\left( 2 \right)$$


    Substitute above value in equation (2),


    $$3f'\left( 2 \right) + \dfrac{1}{2}\left( {\dfrac{1}{3} - \dfrac{8}{3}f'\left( 2 \right)} \right) = 1$$


    $$3f'\left( 2 \right) + \dfrac{1}{6} - \dfrac{4}{3}f'\left( 2 \right) = 1$$


    $$3f'\left( 2 \right) - \dfrac{4}{3}f'\left( 2 \right) = 1 - \dfrac{1}{6}$$


    $$\dfrac{{9f'\left( 2 \right) - 4f'\left( 2 \right)}}{3} = \dfrac{{6 - 1}}{6}$$


    $$5f'\left( 2 \right) = \dfrac{5}{2}$$


    $$f'\left( 2 \right) = \dfrac{1}{2}$$


    Therefore, the value of $$f'\left( 2 \right)$$ is $$\dfrac{1}{2}$$.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now