Differentiate $$3f\left( x \right) - 2f\left( {\dfrac{1}{x}} \right) = x$$ with respect to $$x$$,
$$3f'\left( x \right) - 2f'\left( {\dfrac{1}{x}} \right)\left( { - \dfrac{1}{{{x^2}}}} \right) = 1$$
$$3f'\left( x \right) + \dfrac{2}{{{x^2}}}f'\left( {\dfrac{1}{x}} \right) = 1$$ (1)
Put $$x = 2$$ in equation (1),
$$3f'\left( 2 \right) + \dfrac{2}{{{2^2}}}f'\left( {\dfrac{1}{2}} \right) = 1$$
$$3f'\left( 2 \right) + \dfrac{1}{2}f'\left( {\dfrac{1}{2}} \right) = 1$$ (2)
Put $$x = \dfrac{1}{2}$$ in equation (1),
$$3f'\left( {\dfrac{1}{2}} \right) + \dfrac{2}{{{{\left( {\dfrac{1}{2}} \right)}^2}}}f'\left( {\dfrac{1}{{\dfrac{1}{2}}}} \right) = 1$$
$$3f'\left( {\dfrac{1}{2}} \right) + \dfrac{2}{{\dfrac{1}{4}}}f'\left( 2 \right) = 1$$
$$3f'\left( {\dfrac{1}{2}} \right) + 8f'\left( 2 \right) = 1$$
$$3f'\left( {\dfrac{1}{2}} \right) = 1 - 8f'\left( 2 \right)$$
$$f'\left( {\dfrac{1}{2}} \right) = \dfrac{1}{3} - \dfrac{8}{3}f'\left( 2 \right)$$
Substitute above value in equation (2),
$$3f'\left( 2 \right) + \dfrac{1}{2}\left( {\dfrac{1}{3} - \dfrac{8}{3}f'\left( 2 \right)} \right) = 1$$
$$3f'\left( 2 \right) + \dfrac{1}{6} - \dfrac{4}{3}f'\left( 2 \right) = 1$$
$$3f'\left( 2 \right) - \dfrac{4}{3}f'\left( 2 \right) = 1 - \dfrac{1}{6}$$
$$\dfrac{{9f'\left( 2 \right) - 4f'\left( 2 \right)}}{3} = \dfrac{{6 - 1}}{6}$$
$$5f'\left( 2 \right) = \dfrac{5}{2}$$
$$f'\left( 2 \right) = \dfrac{1}{2}$$
Therefore, the value of $$f'\left( 2 \right)$$ is $$\dfrac{1}{2}$$.