Self Studies

Relations and Functions Test - 66

Result Self Studies

Relations and Functions Test - 66
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If f(x)=ax+b, where a and b are integers, f(-1)=-5 and f(3)=3, then a and b are equal to
  • Question 2
    1 / -0
    Let 'f' be a function defined from R+R+R^{+}\rightarrow R^{+}  .If (f(xy))2=x(f(y))2(f(xy))^{2}=x(f(y))^{2} for all positive numbers x and y . If f(2)=6, find f(50)=
  • Question 3
    1 / -0
    Let R={(2,3),(3,3),(2,2),(5,5),(2,4),(4,4),(4,3)}R = \left \{(2, 3), (3, 3), (2, 2), (5, 5), (2, 4), (4, 4), (4, 3)\right \} be a relation on the set {2,3,4,5}\left \{2, 3, 4, 5\right \}, then
    Solution

  • Question 4
    1 / -0
    If  g(f(x))=sinxg(f(x))= |sinx|  and  g(f(x))=sin2x,g(f(x))= sin^2 \sqrt{x},  then
    Solution

  • Question 5
    1 / -0
    Let f(x)=xx1+xx2f(x)=\left | x-x_{1} \right |+\left | x-x_{2} \right | where x1andx2x_{1} and x_{2} are distinct  real numbers. Then the number of points at which f(x) is minimum is:
  • Question 6
    1 / -0
    If f(x)=1x+22x4+1x22z4f(x)=\frac{1}{\sqrt{x+2\sqrt{2x-4}}}+\frac{1}{\sqrt{x-2\sqrt{2z-4}}}  for  x > 2 then f(11) = 
    Solution

  • Question 7
    1 / -0
    If f(x)=71+lnxxln7\displaystyle f(x)= \dfrac{7^{1+\ln x}}{x^{\ln 7}}  then f(2015)f (2015) is equal to
    Solution

  • Question 8
    1 / -0
    If f(x)=x+x2f(x)=x+x^{2} is expanded as a Fourier series in (π,π)(-\pi ,\pi ), then a0a_{0}=
    Solution

  • Question 9
    1 / -0
    If (x22)+(y+3)i=7+4i(x^{2}-2)+(y+3)i=7+4i  then x and y are 
    Solution

  • Question 10
    1 / -0
    If f(x+1x)=x2+1x2f\left(x+\dfrac{1}{x}\right)=x^2+\dfrac{1}{x^2} then f(x)=?f(x)=?
    Solution
    Let x+1x=zx+\dfrac{1}{x}=z

    Then,
    f(z)=f(x+1x)=(x2+1x2)=(x+1x)22=(z22)f(z)=f\left(x+\dfrac{1}{x}\right)=\left(x^2+\dfrac{1}{x^2}\right)=\left(x+\dfrac{1}{x}\right)^2-2=(z^2-2).

    f(x)=(x22)\Rightarrow f(x)=(x^2-2).
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now