Self Studies

Trigonometric Functions Test 12

Result Self Studies

Trigonometric Functions Test 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\left( \text{cosec} { \theta  } -\sin { \theta  }  \right) \left( \sec { \theta  } -\cos { \theta  }  \right) \left( \tan { \theta  } +\cot { \theta  }  \right) $$ simplifies to
    Solution
    $$\left( \cos\theta -\sin\theta  \right) \left( \sec\theta -\cos\theta  \right) \left( \tan\theta +\cot\theta  \right) $$
    $$=\left( \dfrac { 1 }{ \sin\theta  } -\sin\theta  \right) \left( \dfrac { 1 }{ \cos\theta  } -\cos\theta  \right) \left( \dfrac { \sin\theta  }{ \cos\theta  } +\dfrac { \cos\theta  }{ \sin\theta  }  \right) $$
    $$= \dfrac { \left( 1-{ \sin }^{ 2 }\theta  \right)  }{ \sin\theta  } \times \dfrac { \left( 1-{ \cos }^{ 2 }\theta  \right)  }{ \cos\theta  } \times \dfrac { \left( { \sin }^{ 2 }\theta +{ \cos }^{ 2 }\theta  \right)  }{ \sin\theta \cos\theta  } $$
    $$= \dfrac { { \cos }^{ 2 }\theta .{ \sin }^{ 2 }\theta .1 }{ { \sin }^{ 2 }\theta .{ \cos }^{ 2 }\theta  } $$
    $$=1$$
  • Question 2
    1 / -0
    If $$\sin \alpha + \cos \alpha = k$$, then $$|\sin \alpha - \cos \alpha |$$ equals.
    Solution
    $$\sin\alpha +\cos\alpha =k$$
    $${ \left( \sin\alpha +\cos\alpha  \right)  }^{ 2 }={ k }^{ 2 }$$
    $${ \sin }^{ 2 }\alpha +{ \cos }^{ 2 }\alpha +2\sin\alpha \cos\alpha ={ k }^{ 2 }$$
    $$2\sin\alpha \cos\alpha ={ k }^{ 2 }-1$$
    $${ \left| \sin\alpha -\cos\alpha  \right|  }^{ 2 }=\left| { \sin }^{ 2 }\alpha +{ \cos }^{ 2 }\alpha -2\sin\alpha \cos\alpha  \right| $$
    $${ \left| \sin\alpha -\cos\alpha  \right|  }^{ 2 }=\left| 1-\left( { k }^{ 2 }-1 \right)  \right| $$
    $${ \left| \sin\alpha -\cos\alpha  \right|  }^{ 2 }=\left| 2-{ k }^{ 2 } \right| $$
                or
    $$\left| \sin\alpha -\cos\alpha  \right| =\sqrt { 2-{ k }^{ 2 } } $$
  • Question 3
    1 / -0
    The expression $$3(\sin x - \cos x)^{4} + 6(\sin x + \cos x)^{2} + 4(\sin^{6}x + \cos^{6}c)$$ is equal to
    Solution
    $$3(\sin x - \cos x)^{4} + 6(\sin x + \cos x)^{2} + 4(\sin^{6}x + \cos^{6}c)$$
    $$= 3(1 + 4\sin^{2} x\cos^{2} x - 4\sin x\cos x) + 6(1 + 2\sin x \cos x) + 4(1 - 3\sin^{2}x \cos^{2}x) = 3 + 6 + 4 = 13$$.
  • Question 4
    1 / -0
    If $$n = \dfrac {\cos \alpha}{\cos \beta}, m = \dfrac {\sin \alpha}{\sin \beta}$$, then $$(m^{2} - n^{2})\sin^{2}\beta$$ is
    Solution
    Given,

    $$(m^2-n^2)\sin ^2\beta $$

    $$=\left ( \dfrac{\sin ^2\alpha }{\sin ^2\beta } -\dfrac{\cos ^2\alpha }{\cos ^2\beta }\right )\sin ^2\beta $$

    $$=\left ( \dfrac{\cos ^2\beta \sin ^2\alpha-\sin ^2\beta\cos ^2\alpha }{\sin ^2\beta \cos ^2\beta} \right )\sin ^2\beta $$

    $$=\sin ^2\alpha-\dfrac{\sin ^2\beta}{\cos ^2\beta }\cos ^2\alpha$$

    $$=1-\dfrac{\cos ^2\alpha }{\cos ^2\beta }$$

    $$=1-n^2$$
  • Question 5
    1 / -0
    $$(\sin \theta + \cos \theta)(1 - \sin \theta \cos \theta)$$ can be written as
    Solution
    $$\sin \theta + \cos \theta - \sin^{2} \theta \cos \theta - \sin \theta \cos^{2}\theta$$
    $$= \cos \theta (1 - \sin^{2} \theta) + \sin \theta (1 - \cos^{2}\theta) = \cos^{3}\theta + \sin^{3}\theta$$.
  • Question 6
    1 / -0
    $$\sin ^{ 6 }{ \theta  } +\sin ^{ 2 }{ \theta  } \cos ^{ 2 }{ \theta  } -\sin ^{ 4 }{ \theta  } \cos ^{ 4 }{ \theta  } -\cos ^{ 6 }{ \theta  } $$ equals to
  • Question 7
    1 / -0
    $$\left( 1-\sin ^{ 2 }{ \theta  }  \right) \left( 1+\tan ^{ 2 }{ \theta  }  \right) $$ is equal to
    Solution
    $$\left( 1-\sin ^{ 2 }{ \theta  }  \right) \left( 1+\tan ^{ 2 }{ \theta  }  \right) =\cos ^{ 2 }{ \theta  } \sec ^{ 2 }{ \theta  } =1\quad \quad $$
  • Question 8
    1 / -0
    $$\cfrac { 3-4\sin ^{ 2 }{ \theta  }  }{ \cos ^{ 2 }{ \theta  }  } $$ is equal to
    Solution
    $$ \dfrac { 3-4{ \sin }^{ 2 }\theta  }{ { \cos }^{ 2 }\theta  } =\dfrac { 3{ \sin }^{ 2 }\theta +3{ \cos }^{ 2 }\theta -4{ \sin }^{ 2 }\theta  }{ { \cos }^{ 2 }\theta  } $$

    $$=\dfrac { 3{ \cos }^{ 2 }\theta -{ \sin }^{ 2 }\theta  }{ { \cos }^{ 2 }\theta  } =3-{ \tan }^{ 2 }\theta $$
  • Question 9
    1 / -0
    If $$\tan { \theta  } =\dfrac {3}{4} $$ and $$0<\theta <{ 90 }^{ 0 }$$, then the value of $$\sin { \theta  } \cos { \theta  } $$ is
    Solution
    $$\tan { \theta  } =\cfrac { 3 }{ 4 } \Rightarrow \cfrac { P }{ B } =\cfrac { 3 }{ 4 } \Rightarrow H=\sqrt { 9+16 } =5\Rightarrow \sin { \theta  } \cos { \theta  } =\cfrac { 12 }{ 25 } $$
  • Question 10
    1 / -0
    If $$\cfrac { \sin { \left( x+y \right)  }  }{ \sin { \left( x-y \right)  }  } =\cfrac { a+b }{ a-b } $$, then what is $$\cfrac { \tan { x }  }{ \tan { y }  } $$ equal to?
    Solution
    $$\dfrac{sin(x+y)}{sin(x-y)}=\dfrac{a+b}{a-b}\Rightarrow \dfrac{sinxcosy+cosxsiny}{sinxcosy-sinycosx}=\dfrac{a+b}{a-b}$$

    $$\Rightarrow (a-b)(sinxcosy+cosxsiny)=(a+b)(sinxcosy-sinycosx)\\ \Rightarrow asinxcosy+acosxsiny-bsinxcosy-bcosxsiny=asinxcosy-asinycosx+bsinxcosy-bsinycosx\\ \Rightarrow sinxcosy(-2b)=sinycosx(-2a)\\ \Rightarrow \dfrac{\dfrac{sinx}{cosx}}{\dfrac{siny}{cosy}}=\dfrac{a}{b}\Rightarrow \dfrac{tanx}{tany}=\dfrac{a}{b}$$

    Therefore, Answer is $$A$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now