Self Studies

Trigonometric Functions Test 12

Result Self Studies

Trigonometric Functions Test 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    (cosecθ sinθ  )(secθ cosθ  )(tanθ +cotθ  )\left( \text{cosec} { \theta  } -\sin { \theta  }  \right) \left( \sec { \theta  } -\cos { \theta  }  \right) \left( \tan { \theta  } +\cot { \theta  }  \right) simplifies to
    Solution
    (cosθsinθ )(secθcosθ )(tanθ+cotθ )\left( \cos\theta -\sin\theta  \right) \left( \sec\theta -\cos\theta  \right) \left( \tan\theta +\cot\theta  \right)
    =(1sinθ sinθ )(1cosθ cosθ )(sinθ cosθ +cosθ sinθ  )=\left( \dfrac { 1 }{ \sin\theta  } -\sin\theta  \right) \left( \dfrac { 1 }{ \cos\theta  } -\cos\theta  \right) \left( \dfrac { \sin\theta  }{ \cos\theta  } +\dfrac { \cos\theta  }{ \sin\theta  }  \right)
    =(1sin2θ ) sinθ ×(1cos2θ ) cosθ ×(sin2θ+cos2θ ) sinθcosθ = \dfrac { \left( 1-{ \sin }^{ 2 }\theta  \right)  }{ \sin\theta  } \times \dfrac { \left( 1-{ \cos }^{ 2 }\theta  \right)  }{ \cos\theta  } \times \dfrac { \left( { \sin }^{ 2 }\theta +{ \cos }^{ 2 }\theta  \right)  }{ \sin\theta \cos\theta  }
    =cos2θ.sin2θ.1sin2θ.cos2θ = \dfrac { { \cos }^{ 2 }\theta .{ \sin }^{ 2 }\theta .1 }{ { \sin }^{ 2 }\theta .{ \cos }^{ 2 }\theta  }
    =1=1
  • Question 2
    1 / -0
    If sinα+cosα=k\sin \alpha + \cos \alpha = k, then sinαcosα|\sin \alpha - \cos \alpha | equals.
    Solution
    sinα+cosα=k\sin\alpha +\cos\alpha =k
    (sinα+cosα ) 2=k2{ \left( \sin\alpha +\cos\alpha  \right)  }^{ 2 }={ k }^{ 2 }
    sin2α+cos2α+2sinαcosα=k2{ \sin }^{ 2 }\alpha +{ \cos }^{ 2 }\alpha +2\sin\alpha \cos\alpha ={ k }^{ 2 }
    2sinαcosα=k212\sin\alpha \cos\alpha ={ k }^{ 2 }-1
    sinαcosα  2=sin2α+cos2α2sinαcosα { \left| \sin\alpha -\cos\alpha  \right|  }^{ 2 }=\left| { \sin }^{ 2 }\alpha +{ \cos }^{ 2 }\alpha -2\sin\alpha \cos\alpha  \right|
    sinαcosα  2=1(k21) { \left| \sin\alpha -\cos\alpha  \right|  }^{ 2 }=\left| 1-\left( { k }^{ 2 }-1 \right)  \right|
    sinαcosα  2=2k2{ \left| \sin\alpha -\cos\alpha  \right|  }^{ 2 }=\left| 2-{ k }^{ 2 } \right|
                or
    sinαcosα =2k2\left| \sin\alpha -\cos\alpha  \right| =\sqrt { 2-{ k }^{ 2 } }
  • Question 3
    1 / -0
    The expression 3(sinxcosx)4+6(sinx+cosx)2+4(sin6x+cos6c)3(\sin x - \cos x)^{4} + 6(\sin x + \cos x)^{2} + 4(\sin^{6}x + \cos^{6}c) is equal to
    Solution
    3(sinxcosx)4+6(sinx+cosx)2+4(sin6x+cos6c)3(\sin x - \cos x)^{4} + 6(\sin x + \cos x)^{2} + 4(\sin^{6}x + \cos^{6}c)
    =3(1+4sin2xcos2x4sinxcosx)+6(1+2sinxcosx)+4(13sin2xcos2x)=3+6+4=13= 3(1 + 4\sin^{2} x\cos^{2} x - 4\sin x\cos x) + 6(1 + 2\sin x \cos x) + 4(1 - 3\sin^{2}x \cos^{2}x) = 3 + 6 + 4 = 13.
  • Question 4
    1 / -0
    If n=cosαcosβ,m=sinαsinβn = \dfrac {\cos \alpha}{\cos \beta}, m = \dfrac {\sin \alpha}{\sin \beta}, then (m2n2)sin2β(m^{2} - n^{2})\sin^{2}\beta is
    Solution
    Given,

    (m2n2)sin2β(m^2-n^2)\sin ^2\beta

    =(sin2αsin2βcos2αcos2β)sin2β=\left ( \dfrac{\sin ^2\alpha }{\sin ^2\beta } -\dfrac{\cos ^2\alpha }{\cos ^2\beta }\right )\sin ^2\beta

    =(cos2βsin2αsin2βcos2αsin2βcos2β)sin2β=\left ( \dfrac{\cos ^2\beta \sin ^2\alpha-\sin ^2\beta\cos ^2\alpha }{\sin ^2\beta \cos ^2\beta} \right )\sin ^2\beta

    =sin2αsin2βcos2βcos2α=\sin ^2\alpha-\dfrac{\sin ^2\beta}{\cos ^2\beta }\cos ^2\alpha

    =1cos2αcos2β=1-\dfrac{\cos ^2\alpha }{\cos ^2\beta }

    =1n2=1-n^2
  • Question 5
    1 / -0
    (sinθ+cosθ)(1sinθcosθ)(\sin \theta + \cos \theta)(1 - \sin \theta \cos \theta) can be written as
    Solution
    sinθ+cosθsin2θcosθsinθcos2θ\sin \theta + \cos \theta - \sin^{2} \theta \cos \theta - \sin \theta \cos^{2}\theta
    =cosθ(1sin2θ)+sinθ(1cos2θ)=cos3θ+sin3θ= \cos \theta (1 - \sin^{2} \theta) + \sin \theta (1 - \cos^{2}\theta) = \cos^{3}\theta + \sin^{3}\theta.
  • Question 6
    1 / -0
    sin6θ +sin2θ cos2θ sin4θ cos4θ cos6θ \sin ^{ 6 }{ \theta  } +\sin ^{ 2 }{ \theta  } \cos ^{ 2 }{ \theta  } -\sin ^{ 4 }{ \theta  } \cos ^{ 4 }{ \theta  } -\cos ^{ 6 }{ \theta  } equals to
  • Question 7
    1 / -0
    (1sin2θ  )(1+tan2θ  )\left( 1-\sin ^{ 2 }{ \theta  }  \right) \left( 1+\tan ^{ 2 }{ \theta  }  \right) is equal to
    Solution
    (1sin2θ  )(1+tan2θ  )=cos2θ sec2θ =1\left( 1-\sin ^{ 2 }{ \theta  }  \right) \left( 1+\tan ^{ 2 }{ \theta  }  \right) =\cos ^{ 2 }{ \theta  } \sec ^{ 2 }{ \theta  } =1\quad \quad
  • Question 8
    1 / -0
    34sin2θ  cos2θ  \cfrac { 3-4\sin ^{ 2 }{ \theta  }  }{ \cos ^{ 2 }{ \theta  }  } is equal to
    Solution
    34sin2θ cos2θ =3sin2θ+3cos2θ4sin2θ cos2θ  \dfrac { 3-4{ \sin }^{ 2 }\theta  }{ { \cos }^{ 2 }\theta  } =\dfrac { 3{ \sin }^{ 2 }\theta +3{ \cos }^{ 2 }\theta -4{ \sin }^{ 2 }\theta  }{ { \cos }^{ 2 }\theta  }

    =3cos2θsin2θ cos2θ =3tan2θ=\dfrac { 3{ \cos }^{ 2 }\theta -{ \sin }^{ 2 }\theta  }{ { \cos }^{ 2 }\theta  } =3-{ \tan }^{ 2 }\theta
  • Question 9
    1 / -0
    If tanθ =34\tan { \theta  } =\dfrac {3}{4} and 0<θ<9000<\theta <{ 90 }^{ 0 }, then the value of sinθ cosθ \sin { \theta  } \cos { \theta  } is
    Solution
    tanθ =34PB=34H=9+16=5sinθ cosθ =1225\tan { \theta  } =\cfrac { 3 }{ 4 } \Rightarrow \cfrac { P }{ B } =\cfrac { 3 }{ 4 } \Rightarrow H=\sqrt { 9+16 } =5\Rightarrow \sin { \theta  } \cos { \theta  } =\cfrac { 12 }{ 25 }
  • Question 10
    1 / -0
    If sin(x+y)  sin(xy)  =a+bab\cfrac { \sin { \left( x+y \right)  }  }{ \sin { \left( x-y \right)  }  } =\cfrac { a+b }{ a-b } , then what is tanx tany \cfrac { \tan { x }  }{ \tan { y }  } equal to?
    Solution
    sin(x+y)sin(xy)=a+babsinxcosy+cosxsinysinxcosysinycosx=a+bab\dfrac{sin(x+y)}{sin(x-y)}=\dfrac{a+b}{a-b}\Rightarrow \dfrac{sinxcosy+cosxsiny}{sinxcosy-sinycosx}=\dfrac{a+b}{a-b}

    (ab)(sinxcosy+cosxsiny)=(a+b)(sinxcosysinycosx)asinxcosy+acosxsinybsinxcosybcosxsiny=asinxcosyasinycosx+bsinxcosybsinycosxsinxcosy(2b)=sinycosx(2a)sinxcosxsinycosy=abtanxtany=ab\Rightarrow (a-b)(sinxcosy+cosxsiny)=(a+b)(sinxcosy-sinycosx)\\ \Rightarrow asinxcosy+acosxsiny-bsinxcosy-bcosxsiny=asinxcosy-asinycosx+bsinxcosy-bsinycosx\\ \Rightarrow sinxcosy(-2b)=sinycosx(-2a)\\ \Rightarrow \dfrac{\dfrac{sinx}{cosx}}{\dfrac{siny}{cosy}}=\dfrac{a}{b}\Rightarrow \dfrac{tanx}{tany}=\dfrac{a}{b}

    Therefore, Answer is AA
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now