Self Studies

Trigonometric F...

TIME LEFT -
  • Question 1
    1 / -0

    If sin(πcosθ)=cos\mathrm{s}in(\pi \mathrm{c}\mathrm{o}s\theta)= \mathrm{c}os(πsinθ)(\pi\sin\theta) , then which of the following is correct

  • Question 2
    1 / -0

     If tanθ=xsinϕ1xcosϕ\tan\theta=\displaystyle \dfrac{x\sin\phi}{1-x\cos\phi}, tanϕ=ysinθ1ycosθ\displaystyle \tan\phi=\dfrac{y\sin\theta}{1-y\cos\theta} , then xy=\displaystyle \dfrac{x}{y}=

  • Question 3
    1 / -0

    If 32tan8θ=2cos2α3cosα 32\tan^{8}\theta=2\cos^{2}\alpha-3\cos\alpha and 3cos2θ=13\cos2\theta=1 then the general value of α\alpha is

  • Question 4
    1 / -0

    The values of xx between 00 and 2p2p which satisfy the equation sinx8cos2x=1\sin x\sqrt{8\cos^{2}x}=1 are in A.P. The common difference of the A.P. is


  • Question 5
    1 / -0

    tanx+secx=tanxsecx,xϵ[0,2π]|\tan x + \sec x| = |\tan x| - |\sec x|, x \epsilon [0,2\pi]if and only if x belongs to the interval

  • Question 6
    1 / -0

    The total number of solutions of cosx=1sin2x\cos x=\sqrt{1-\sin 2x} in [0,2π ]\left [ 0,2\pi  \right ] is equal to

  • Question 7
    1 / -0

    Find the value of cot1(1sinx+1+sinx1sinx1+sinx)\cot^{-1}\left(\dfrac{\sqrt {1-\sin x}+\sqrt {1+\sin x}}{\sqrt {1-\sin x}-\sqrt {1+\sin x}}\right)

  • Question 8
    1 / -0

    Directions For Questions

    The trigonometric equation is-
    sinx+3sin2x+sin3x=cosx+3cos2x+cos3x\sin x+3 \sin 2x+\sin 3x=\cos x+3 \cos 2x+\cos 3x
    when xx lies in first four quadrants. It means xϵ[0,2π]x\epsilon [0, 2\pi], then-

    ...view full instructions

    The difference between greatest and least solution of xx is-

  • Question 9
    1 / -0

    The value of tanα1cotα+cotα1tanα\dfrac{\tan \alpha}{1-\cot \alpha}+\dfrac{\cot \alpha}{1-\tan \alpha} is identically equal to

  • Question 10
    1 / -0

    If cosθsinθ=2sinθ \cos \theta - \sin \theta =\sqrt{2} \sin \theta, then cosθ+sinθ \cos \theta + \sin \theta is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now