Self Studies

Principle of Ma...

TIME LEFT -
  • Question 1
    1 / -0

    Let P(n) be a statement and let P(n) ⇒ P( n + 1 ) for all natural numbers n , then what will the nature of  P(n) ?

  • Question 2
    1 / -0

    Let P(n) b e a statement 2n < n! , where n is a natural number , then P(n)is true for

  • Question 3
    1 / -0

    If x > -1 , then the statement ( 1 + x ) n > 1 + nx is true for

  • Question 4
    1 / -0

    If P ( n ) = 2+4+6+………………..+2n , n ∈ N , then P ( k ) = k ( k + 1 ) + 2 ⇒ P ( k + 1 ) = ( k + 1 ) ( k +2 ) + 2 for all k ∈ N . So we can conclude that P ( n ) = n ( n + 1 ) +2 for

  • Question 5
    1 / -0

    (xn − yn) is divisible by ( x - y ) for 

  • Question 6
    1 / -0

    The greatest positive integer , which divides n ( n + 1 ) ( n + 2 ) ( n + 3 ) for all n ∈ N , is

  • Question 7
    1 / -0

    Let P ( n ) denote the statement n2 + n is odd , It is seen that P(n) ⇒ P( n + 1 ) , therefore P ( n ) is true for all

  • Question 8
    1 / -0

    The greatest positive integer, which divides (n + 1) (n + 2) (n + 3)..................(n + r)∀n ∈ W , is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 8

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now