Self Studies

Complex Numbers...

TIME LEFT -
  • Question 1
    1 / -0

    If $$\alpha $$ and $$\beta $$ are real then $$\left| \dfrac { \alpha +i\beta  }{ \beta +i\alpha  }  \right|=$$ 

  • Question 2
    1 / -0

    If $$m_1$$, $$m_2$$, $$m_3$$ and $$m_4$$ respectively denote the moduli of the complex numbers $$1 + 4i, 3 + i, 1 – i \ and\  2 – 3i$$ then the correct order among the following is :

  • Question 3
    1 / -0

    The principal argument of $$z=-3+3i$$ is:

  • Question 4
    1 / -0

    Assertion (A): The principal amplitude of complex number $$x + ix$$ is $$\cfrac{\pi }{4}$$.
    Reason (R): The principal amplitude of a complex number $$x + iy$$ is $$\cfrac{\pi }{4}$$ if $$y = x$$.

  • Question 5
    1 / -0

    The area of the triangle formed by the three complex numbers $$1 + i$$, $$i - 1$$ , $$2i$$ in the Argand diagram is:

  • Question 6
    1 / -0

    If $$z_1$$ and $$z_2$$ are two complex numbers, then $$Re(z_1z_2)$$ is:

  • Question 7
    1 / -0

    In the argand diagram, the complex number z is in the fourth quadrant,  then $$\overline{z}$$, $$-z$$, $$\overline{-z}$$ are respectively are in quardrants

  • Question 8
    1 / -0

    The value of $$1+(1+i)+(1+i)^2+(1+i)^3=$$

  • Question 9
    1 / -0

    lf $$(x+iy)(2+cos\theta+isin\theta)=3$$ then $$x^{2}+y^{2}-4x+3$$ is

  • Question 10
    1 / -0

    If $$z_1$$, $$z_2$$ are the complex numbers such that $$|z_1+z_2|=|z_1|+|z_2|$$ then arg $$z_1 - $$ arg $$z_2$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now