`
Self Studies

Complex Numbers and Quadratic Equations Test 10

Result Self Studies

Complex Numbers and Quadratic Equations Test 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Discuss the nature of the roots of the equations  $$\displaystyle (a+c-b)x^{2}+2cx+(b+c-a)=0$$
    Solution
    $$\left( a+c-b \right) { x }^{ 2 }+2cx+\left( b+c-a \right) =0\\ D={ B }^{ 2 }-4AC\\ ={ \left( 2c \right)  }^{ 2 }-4\left( b+c-a \right) \left( a+c-b \right) \\ =4{ c }^{ 2 }-4\left( ab+cb-{ b }^{ 2 }+ac+{ c }^{ 2 }-cb-{ a }^{ 2 }-ac+ab \right) \\ =4c^{ 2 }+4{ b }^{ 2 }+{ 4a }^{ 2 }-{ 4c }^{ 2 }-8ab\\ ={ 4a }^{ 2 }+{ 4b }^{ 2 }-8ab=4{ \left( a-b \right)  }^{ 2 }>0$$
    Hence roots  are real and unequal
  • Question 2
    1 / -0
    If $$-2$$ is a root of the quadratic equation $$x^2 + px + 2 = 0$$ and the quadratic equation $$2x^2 + px+ k = 0$$ has equal roots, find the value of $$k$$.
    Solution
    Given, $$ -2 $$ is one of the root of first equation $$ x^2 + px + 2 = 0$$
    Let's take $$ \alpha$$ as other root of the equation. 
    Now, product of the roots is given by $$ (-2).\alpha = 2 $$ $$\longrightarrow$$ $$ \alpha = -1$$ and from sum of roots we get $$ -2 + (-1) = -p $$ $$\longrightarrow$$ $$ p = 3 $$
    Now in the second equation roots are equal, take it as $$\beta$$.
    From sum of roots we get $$ 2.\beta = \dfrac{-p}{2} $$ $$\longrightarrow$$ $$\beta = \dfrac{-3}{4} $$ and from product of the roots we get $${\beta}^{2} = \dfrac{k}{2}$$ 
    $$\Rightarrow$$ $$ k = 2.{\beta}^{2} $$ 
    $$ \Rightarrow$$ $$ k = \frac{9}{8}$$ 
  • Question 3
    1 / -0
    If $$z = re^{i\theta}$$, then the value of $$|e^{iz}|$$ is equal to
    Solution
    Ginen,
    $$ z=r{ e }^{ i\theta  }$$
    To find$$ \left| { e }^{ iz } \right| $$
     solution, 
    for given,$$z=r{ e }^{ i\theta  }\\ z=r(\cos\theta +i\sin\theta )\left\{ { e }^{ i\theta  }=(\cos\theta +i\sin\theta ) \right\} \\ iz=ir(\cos\theta +i\sin\theta )\\ iz=r(i\cos\theta +{ i }^{ 2 }\sin\theta )\\ iz=r(-\sin\theta +i\cos\theta )\\ iz=-r\sin\theta +ir\cos\theta \\ { e }^{ iz }={ e }^{ -r\sin\theta +ir\cos\theta  }\\ \left| { e }^{ iz } \right| =\left| { e }^{ -r\sin\theta  } \right| \left| { e }^{ ir\cos\theta  } \right| $$
     We know that$$ \left| { e }^{ iz } \right| =1\\ \therefore \left| { e }^{ iz } \right| =\left| { e }^{ -r\sin\theta  } \right| \longrightarrow \{ always\quad positive\} \\ { e }^{ iz }={ e }^{ -r\sin\theta  }$$
  • Question 4
    1 / -0
    Find the value of $$p$$ for which the quadratic equation $$x^2 + p(4x + p - 1) + 2 = 0$$ has equal roots ?
    Solution
    Given equation is $$ x^2 + p(4x + p - 1) + 2 = 0$$.
    Comparing it with the $$ax^2+bx+c$$, we get 
    $$a=1, b=4p, c=(p^2-p+2)$$
    Therefore, $$D=b^2-4ac$$   
    $$ x^2 + p(4x + p - 1) + 2 = 0$$.
    $$\Rightarrow x^2+4xp+p^2-p+2=0$$
    $$\Rightarrow (4p)^2-4(p^2-p+2)=0$$
    $$\Rightarrow 16p^2-4p^2+4p-8=0$$
    $$\Rightarrow 12p^2+4p-8=0$$
    $$\Rightarrow 3p^2+p-2=0$$
    $$\Rightarrow 3p^2+3-2p-2=0$$
    $$\Rightarrow 3p(p+1)-2(p+1)=0$$
    $$\Rightarrow (p+1)(3p-2)=0$$
    $$\Rightarrow p=-1 $$and  $$p=\dfrac {2}{3}$$
  • Question 5
    1 / -0
    Find the modulus and amplitude of $$-2i$$
    Solution
    $$z=-2i$$            $$|z|=2$$

    $$=2(-i)$$

    $$=2e^{i\frac{-\pi}{2}}$$

    $$=|z|(e^{i\arg(z)})$$

    Hence

    $$|z|=2$$ and $$arg(z)=\dfrac{-\pi}{2}$$
  • Question 6
    1 / -0
    Find the modulus and amplitude of $$-2 + 2 \sqrt 3i$$
    Solution
    Given $$z=-2+2\sqrt{3}i$$
    Hence, $$|z|=2\sqrt{1+3}\ \Rightarrow 2\sqrt{4}$$
    $$\Rightarrow 2\times2=4$$
    And let $$\alpha$$ be the argument of the complex number.
    Then
    $$tan\alpha=-\sqrt{3}$$
    Now $$Re(z)<0$$ and $$Im(z)>0$$
    $$\therefore $$  the number lies in the II quadrant 
    Hence,
    $$\alpha=\pi-\dfrac{\pi}{3}$$

    $$=\dfrac{2\pi}{3}$$
  • Question 7
    1 / -0
    Find the modulus and amplitude of $$-\sqrt 3-i$$
    Solution
    $$z=-\sqrt{3}-i$$    $$|z|=2$$

    $$=2(\dfrac{-\sqrt{3}-i}{2})$$

    $$=2e^{i(\frac{\pi}{6}-\pi)}$$

    $$=2e^{i\frac{-5\pi}{6}}$$

    $$=|z|.e^{iarg(z)}$$

    Hence

    $$|z|=2$$ and $$arg(z)=\dfrac{-5\pi}{6}$$.
  • Question 8
    1 / -0

    The amplitude of

    $$\displaystyle sin \frac{\pi}{5} + i \left ( 1 - cos \frac{\pi}{5} \right )$$

    Solution
    Given,
    $$\Rightarrow\displaystyle \sin\frac { \pi  }{ 5 } +i\left( 1-\cos\frac { \pi  }{ 5 }  \right)$$

    $$ =2\sin\dfrac { \pi  }{ 10 } \cos\dfrac { \pi  }{ 10 } +i2\sin^{ 2 }\dfrac { \pi  }{ 10 } $$  $$[\because \sin2\theta=2\sin\theta \cos\theta\quad 2\sin^2\theta=1-\cos\theta]$$

    $$\displaystyle =2\sin\frac { \pi  }{ 10 } \left( \cos\frac { \pi  }{ 10 } +i\sin\frac { \pi  }{ 10 }  \right) $$

    Then

    $$Amplitude=\tan\theta=\dfrac yx$$

    $$\displaystyle \tan\theta =\frac { \sin\frac { \pi  }{ 10 }  }{ \cos\frac { \pi  }{ 10 }  } =\tan\frac { \pi  }{ 10 }$$

    $$ \Rightarrow \theta =\dfrac { \pi  }{ 10 } $$
  • Question 9
    1 / -0
    If $$z_1, z_2, \varepsilon C$$ are such that $$|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2$$ then $$\displaystyle \frac{z_1}{z_2}$$ is
    Solution
    $$\because |z_1 + z_2|^2 = |z_1|^2 + |z_2|^2$$

    $$\Rightarrow |z_1|^2 + |z_2|^2 + 2 R (z_1 \bar z_2) = |z_1|^2 + |z_2|^2$$

    $$\Rightarrow R(z_1 \bar z_2) = 0 \Rightarrow z_1 \bar z_2$$ is imaginary

    Now $$\displaystyle \frac{z_1}{z_2} = \frac{z_1 \bar z_2}{z_2 \bar z_2} = \frac{\text{imaginary}}{|z_2|^2} = $$ imaginary
  • Question 10
    1 / -0
    Find the value of $$x^3 + 7x^2 -x + 16$$, where $$x = 1 + 2i$$
    Solution
    $$f\left(x\right)={x}^{3}+7{x}^{2}-x+16$$
    $$f(1+2i)=(1+2i)^3+7(1+2i)^2-(1+2i)+16$$
    $$=\left[1+8{i}^{3}+6i\left(1+2i\right)\right]+7\left[1+4{i}^{2}+4i\right]-1-2i+16$$
    $$=\left[1-8i+6i-12\right]+7\left[1-4+4i\right]-2i+15$$
    $$=\left[-11-2i\right]+7\left[4i-3\right]-2i+15$$
    $$=-11-2i+28i-21-2i+15$$
    $$=\left(-32+15\right)+24i$$
    $$=-17+24i$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now