Self Studies

Complex Numbers and Quadratic Equations Test 14

Result Self Studies

Complex Numbers and Quadratic Equations Test 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the value of 
    arg((1+i)i)arg\left ( \left ( 1+i \right )^{i} \right )
    Solution

    Write (1+i)(1+i) as 2e[iπ4]\sqrt 2 e^{[\dfrac{i\pi}{4}]}

    Therefore

    (1+i)i=2ieπ/4=[e(8n+1)π4]×eiln22(1+i)^i=\sqrt 2^{i}e^{-\pi/4}=[e^{-(8n+1)\tfrac{\pi}{4}}]\times e^{i\tfrac{ln2}{2}}

    So,
    arg(1+i)i=arg[e(8n+1)π4]×eiln22=arg[keiln22]=ln22arg(1+i)^i=arg[e^{-(8n+1)\tfrac{\pi}{4}}]\times e^{i\tfrac{ln2}{2}}=arg[ke^{i\tfrac{ln2}{2}}]=\dfrac{ln2}{2}.........[where K=e(8n+1)π4K=e^{-(8n+1)\dfrac{\pi}{4}}]
  • Question 2
    1 / -0
    Find the value of kk for which the equation (k+1)x22(k1)x+1=0(k+1){x}^{2}-2(k-1)x+1=0 has real and equal roots
  • Question 3
    1 / -0
    The quadratic equations x25x+3=0\displaystyle x^{2}-5x+3=0 has 
    Solution
    The nature of roots of the equation can be given by,
    D=b24ac=0,D=b^{ 2 }4ac=0,
    For equation x25x+3=0x^{ 2 }-5x+3=0,
    D=(5)24(3)(1)D=(-5)^{ 2 }-4(3)(1)
    D=13>0D=13>0,
    It has two distinct real roots. 
  • Question 4
    1 / -0
    If the roots of the equation x2+px6=0\displaystyle x^{2}+px-6=0 are 66 and 1-1 then the value of pp is
    Solution
    GIven equation is :
    x2+px6=0x^{2}+px-6=0 ...... (i)(i)
    66 and 1-1 are the roots of (i)(i)
    So, they satisfies (i)(i)
    If 66 is the root of (i)(i) 
        (6)2+p(6)6=036+6p6=06p=36+66p=30p=5\implies (6)^{2}+p(6)-6=0\Rightarrow 36+6p-6=0\Rightarrow 6p=-36+6\Rightarrow 6p=-30\Rightarrow p=-5
    If the root is 1-1 then 
    (1)2+p(1)6=01p6=0p=61p=5(-1)^{2}+p(-1)-6=0\Rightarrow 1-p-6=0\Rightarrow- p=6-1\Rightarrow p=-5
    p=5\therefore p=-5

    Alternate Method
    66 and 1-1 are the roots of (i)(i)
        (x6)(x+1)=x2+px6\implies (x-6)(x+1)=x^{2}+px-6 
        x2+x6x6=x2+px6\implies x^{2}+x-6x-6=x^{2}+px-6 
        x25x6=x2+px6\implies x^{2}-5x-6=x^{2}+px-6 
        p=5\implies p=-5
  • Question 5
    1 / -0
    The roots of the equation, where a  ϵ  R\displaystyle a\: \: \epsilon \: \: R  are 
    x2+ax4=0\displaystyle x^{2}+ax-4=0
    Solution
    The equation can be written as x2+ax4=0x^{ 2 }+ax-4=0,
    b24a b^{ 2 }-4a will determine the nature of roots.
    b24ac=a24(1)(4)\Longrightarrow b^{ 2 }-4ac=a^{ 2 }-4(1)(-4)
    b24ac=a2+16>0 \Longrightarrow b^{ 2 }-4ac=a^{ 2 }+16>0
    \therefore roots are real and distinct.
  • Question 6
    1 / -0
    If the roots of the equation (a2+b2)x22b(a+c)x+(b2+c2)=0\displaystyle (a^{2}+b^{2})x^{2}-2b(a+c)x+(b^{2}+c^{2})=0 are equal then =
    Solution
    (a2+b2)x22b(a+c)x+(b2+c2)=0\displaystyle (a^{2}+b^{2})x^{2}-2b(a+c)x+(b^{2}+c^{2})=0
    Roots are real and equal \therefore D=0D = 0
    D=b24ac=0D=b^2-4ac=0
    [2b(a+c)]24(a2+b2)(b2+c2)=0\displaystyle \Rightarrow [-2b(a+c)]^{2}-4(a^{2}+b^{2})(b^{2}+c^{2})=0
    b2(a2+c2+2ac)(a2b2+a2c2+b4+c2c2)=0\displaystyle \Rightarrow b^{2}(a^{2}+c^{2}+2ac)-(a^{2}b^{2}+a^{2}c^{2}+b^{4}+c^{2}c^{2})=0
    b2a2+b2c2+2acb2a2b2a2c2b4b2c2=0\displaystyle \Rightarrow b^{2}a^{2}+b^{2}c^{2}+2acb^{2}-a^{2}b^{2}-a^{2}c^{2}-b^{4}-b^{2}c^{2}=0
    2acb2a2c22acb2=0\displaystyle \Rightarrow 2acb^{2}-a^{2}c^{2}-2acb^{2}=0
    (b2ac)2=0\displaystyle \Rightarrow (b^{2}-ac)^{2}=0
    b2=ac\displaystyle \Rightarrow b^{2}=ac
  • Question 7
    1 / -0
    If the equation x22kx2x+k2=0\displaystyle x^{2}-2kx-2x+k^{2}=0 has equal roots the value of k must be
    Solution
    The equation x22(k+1)x+k2=0x^{ 2 }-2(k+1)x+k^{ 2 }=0 will have equal roots when D=0D=0,
    D=b24ac,D=b^{ 2 }-4ac,
    2(k+1)24(1)(k)2=(k+1)2k2\Longrightarrow 2(k+1)^{ 2 }-4(1)(k)^{ 2 }=(k+1)^{ 2 }-k^{ 2 }
    2k+1=0k=1/2\therefore \Longrightarrow 2k+1=0\\ k=-1/2
  • Question 8
    1 / -0
    For what value of k will x2(3k1)x+2k2+2k=11\displaystyle x^{2}-\left ( 3k-1 \right )x+2k^{2}+2k=11 have equal roots?
    Solution
    For this equation to have equal roots
    b2=4acb^{2}=4ac   Here a=1,b=(3k1)a=1 ,b=-(3k-1)  and c=2k2+2k11c=2k^{2}+2k-11
    Then ((3k1))2=4(1(2k2+2k11))\left ( -(3k-1) \right )^{2}=4\left ( 1(2k^{2}+2k-11) \right )
    9k28k+1=8k2+8k44\Rightarrow 9k^{2}-8k+1=8k^{2}+8k-44
    9k28k26k8k+1+44=0\Rightarrow 9k^{2}-8k^{2}-6k-8k+1+44=0
    k214k+45=0\Rightarrow k^{2}-14k+45=0
    k29k5k+45=0\Rightarrow k^{2}-9k-5k+45=0
    k(k9)5(k9)=0\Rightarrow k(k-9)-5(k-9)=0
    (k9)(k5)=0\Rightarrow (k-9)(k-5)=0 
    Then  k9=0 or  k=9k-9=0 \ or\  k=9
    Or k5=0 or  k=5 k-5=0 \ or\  k=5
    Then values are 9,59,5
  • Question 9
    1 / -0
    Find the value of kk for which the equation x26x+k=0{x}^{2}-6x+k=0 has distinct roots.
    Solution
    Equation x26x+k=0{x}^{2}-6x+k=0 has
    discriminant D=b24acD={b}^{2}-4ac
    =364k=36-4k
    For real roots D>0D>0 
    \Rightarrow 364k>036-4k>0
    \Rightarrow k<9k<9
  • Question 10
    1 / -0
    If z1,z2{z}_{1},{z}_{2} are two complex numbers and c>0c>0 such that z1+z2 2(1+c)z1 2+kz2 2,{ \left| { z }_{ 1 }+{ z }_{ 2 } \right|  }^{ 2 }\le \left( 1+c \right) { \left| { z }_{ 1 } \right|  }^{ 2 }+k{ \left| { z }_{ 2 } \right|  }^{ 2 }, then k=k=
    Solution
    Since Re  (z1z 2)z1z 2\displaystyle \left( { z }_{ 1 }{ \overline { z }  }_{ 2 } \right) \le \left| { z }_{ 1 }{ \overline { z }  }_{ 2 } \right|

     z1 2+z2 2+Re(z1z 2)z1 2+z2 2+2z1z 2\displaystyle \therefore { \left| { z }_{ 1 } \right|  }^{ 2 }+{ \left| { z }_{ 2 } \right|  }^{ 2 }+Re\left( { z }_{ 1 }{ \overline { z }  }_{ 2 } \right) \le { \left| { z }_{ 1 } \right|  }^{ 2 }+{ \left| { z }_{ 2 } \right|  }^{ 2 }+2\left| { z }_{ 1 }{ \overline { z }  }_{ 2 } \right|

     z1+z2 2z1 2+z2 2+2z1z2\displaystyle \Rightarrow { \left| { z }_{ 1 }+{ z }_{ 2 } \right|  }^{ 2 }\le { \left| { z }_{ 1 } \right|  }^{ 2 }+{ \left| { z }_{ 2 } \right|  }^{ 2 }+2\left| { z }_{ 1 } \right| \left| { z }_{ 2 } \right|    ...(1)

    Also, Since A.M.G.M.A.M.\ge G.M.

     (cz1 ) 2+(1c z2 ) 22{c.z1 2.1cz2 2} 12 (c>0)\displaystyle \therefore \frac { { \left( \sqrt { c } \left| { z }_{ 1 } \right|  \right)  }^{ 2 }+{ \left( \frac { 1 }{ \sqrt { c }  } \left| { z }_{ 2 } \right|  \right)  }^{ 2 } }{ 2 } \ge { \left\{ c.{ \left| { z }_{ 1 } \right|  }^{ 2 }.\frac { 1 }{ c } { \left| { z }_{ 2 } \right|  }^{ 2 } \right\}  }^{ \frac { 1 }{ 2 }  }\left( \because c>0 \right)

     cz1 2+1cz1 22z1z2\displaystyle \Rightarrow c{ \left| { z }_{ 1 } \right|  }^{ 2 }+\frac { 1 }{ c } { \left| { z }_{ 1 } \right|  }^{ 2 }\ge 2\left| { z }_{ 1 } \right| \left| { z }_{ 2 } \right|

     z1 2+z1 2+2z1z2z1 2+z2 2+cz1 2+1cz2 2\displaystyle \therefore { \left| { z }_{ 1 } \right|  }^{ 2 }+{ \left| { z }_{ 1 } \right|  }^{ 2 }+2\left| { z }_{ 1 } \right| \left| { z }_{ 2 } \right| \le { \left| { z }_{ 1 } \right|  }^{ 2 }+{ \left| { z }_{ 2 } \right|  }^{ 2 }+c{ \left| { z }_{ 1 } \right|  }^{ 2 }+\frac { 1 }{ c } { \left| { z }_{ 2 } \right|  }^{ 2 }

     z1 2+z2 2+2z1z2(1+c1)(z2 2)\displaystyle \Rightarrow { \left| { z }_{ 1 } \right|  }^{ 2 }+{ \left| { z }_{ 2 } \right|  }^{ 2 }+2\left| { z }_{ 1 } \right| \left| { z }_{ 2 } \right| \le \left( 1+{ c }^{ -1 } \right) \left( { \left| { z }_{ 2 } \right|  }^{ 2 } \right)     ...(2)

    From (1) and (2), we get

     z1+z2 2(1+c)z1 2+(1+c1)z2 2\displaystyle { \left| { z }_{ 1 }+{ z }_{ 2 } \right|  }^{ 2 }\le \left( 1+c \right) { \left| { z }_{ 1 } \right|  }^{ 2 }+\left( 1+{ c }^{ -1 } \right) { \left| { z }_{ 2 } \right|  }^{ 2 }

     k=1+c1\displaystyle \therefore k=1+{ c }^{ -1 }
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now