Since Re $$\displaystyle \left( { z }_{ 1 }{ \overline { z } }_{ 2 } \right) \le \left| { z }_{ 1 }{ \overline { z } }_{ 2 } \right| $$
$$\displaystyle \therefore { \left| { z }_{ 1 } \right| }^{ 2 }+{ \left| { z }_{ 2 } \right| }^{ 2 }+Re\left( { z }_{ 1 }{ \overline { z } }_{ 2 } \right) \le { \left| { z }_{ 1 } \right| }^{ 2 }+{ \left| { z }_{ 2 } \right| }^{ 2 }+2\left| { z }_{ 1 }{ \overline { z } }_{ 2 } \right| $$
$$\displaystyle \Rightarrow { \left| { z }_{ 1 }+{ z }_{ 2 } \right| }^{ 2 }\le { \left| { z }_{ 1 } \right| }^{ 2 }+{ \left| { z }_{ 2 } \right| }^{ 2 }+2\left| { z }_{ 1 } \right| \left| { z }_{ 2 } \right| $$ ...(1)
Also, Since $$A.M.\ge G.M.$$
$$\displaystyle \therefore \frac { { \left( \sqrt { c } \left| { z }_{ 1 } \right| \right) }^{ 2 }+{ \left( \frac { 1 }{ \sqrt { c } } \left| { z }_{ 2 } \right| \right) }^{ 2 } }{ 2 } \ge { \left\{ c.{ \left| { z }_{ 1 } \right| }^{ 2 }.\frac { 1 }{ c } { \left| { z }_{ 2 } \right| }^{ 2 } \right\} }^{ \frac { 1 }{ 2 } }\left( \because c>0 \right) $$
$$\displaystyle \Rightarrow c{ \left| { z }_{ 1 } \right| }^{ 2 }+\frac { 1 }{ c } { \left| { z }_{ 1 } \right| }^{ 2 }\ge 2\left| { z }_{ 1 } \right| \left| { z }_{ 2 } \right| $$
$$\displaystyle \therefore { \left| { z }_{ 1 } \right| }^{ 2 }+{ \left| { z }_{ 1 } \right| }^{ 2 }+2\left| { z }_{ 1 } \right| \left| { z }_{ 2 } \right| \le { \left| { z }_{ 1 } \right| }^{ 2 }+{ \left| { z }_{ 2 } \right| }^{ 2 }+c{ \left| { z }_{ 1 } \right| }^{ 2 }+\frac { 1 }{ c } { \left| { z }_{ 2 } \right| }^{ 2 }$$
$$\displaystyle \Rightarrow { \left| { z }_{ 1 } \right| }^{ 2 }+{ \left| { z }_{ 2 } \right| }^{ 2 }+2\left| { z }_{ 1 } \right| \left| { z }_{ 2 } \right| \le \left( 1+{ c }^{ -1 } \right) \left( { \left| { z }_{ 2 } \right| }^{ 2 } \right) $$ ...(2)
From (1) and (2), we get
$$\displaystyle { \left| { z }_{ 1 }+{ z }_{ 2 } \right| }^{ 2 }\le \left( 1+c \right) { \left| { z }_{ 1 } \right| }^{ 2 }+\left( 1+{ c }^{ -1 } \right) { \left| { z }_{ 2 } \right| }^{ 2 }$$
$$\displaystyle \therefore k=1+{ c }^{ -1 }$$