`
Self Studies

Complex Numbers and Quadratic Equations Test 14

Result Self Studies

Complex Numbers and Quadratic Equations Test 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the value of 
    $$arg\left ( \left ( 1+i \right )^{i} \right )$$
    Solution

    Write $$(1+i)$$ as $$\sqrt 2 e^{[\dfrac{i\pi}{4}]}$$

    Therefore

    $$(1+i)^i=\sqrt 2^{i}e^{-\pi/4}=[e^{-(8n+1)\tfrac{\pi}{4}}]\times e^{i\tfrac{ln2}{2}}$$

    So,
    $$arg(1+i)^i=arg[e^{-(8n+1)\tfrac{\pi}{4}}]\times e^{i\tfrac{ln2}{2}}=arg[ke^{i\tfrac{ln2}{2}}]=\dfrac{ln2}{2}$$.........[where $$K=e^{-(8n+1)\dfrac{\pi}{4}}$$]
  • Question 2
    1 / -0
    Find the value of $$k$$ for which the equation $$(k+1){x}^{2}-2(k-1)x+1=0$$ has real and equal roots
  • Question 3
    1 / -0
    The quadratic equations $$\displaystyle x^{2}-5x+3=0$$ has 
    Solution
    The nature of roots of the equation can be given by,
    $$D=b^{ 2 }4ac=0,$$
    For equation $$x^{ 2 }-5x+3=0$$,
    $$D=(-5)^{ 2 }-4(3)(1)$$
    $$D=13>0$$,
    It has two distinct real roots. 
  • Question 4
    1 / -0
    If the roots of the equation $$\displaystyle x^{2}+px-6=0$$ are $$6$$ and $$-1$$ then the value of $$p$$ is
    Solution
    GIven equation is :
    $$x^{2}+px-6=0$$ ...... $$(i)$$
    $$6$$ and $$-1$$ are the roots of $$(i)$$
    So, they satisfies $$(i)$$
    If $$6$$ is the root of $$(i)$$ 
    $$\implies (6)^{2}+p(6)-6=0\Rightarrow 36+6p-6=0\Rightarrow 6p=-36+6\Rightarrow 6p=-30\Rightarrow p=-5$$
    If the root is $$-1$$ then 
    $$(-1)^{2}+p(-1)-6=0\Rightarrow 1-p-6=0\Rightarrow- p=6-1\Rightarrow p=-5$$
    $$\therefore p=-5$$

    Alternate Method
    $$6$$ and $$-1$$ are the roots of $$(i)$$
    $$\implies (x-6)(x+1)=x^{2}+px-6$$ 
    $$\implies x^{2}+x-6x-6=x^{2}+px-6$$ 
    $$\implies x^{2}-5x-6=x^{2}+px-6$$ 
    $$\implies p=-5$$
  • Question 5
    1 / -0
    The roots of the equation, where $$\displaystyle a\: \: \epsilon \: \: R$$  are 
    $$\displaystyle x^{2}+ax-4=0$$
    Solution
    The equation can be written as $$x^{ 2 }+ax-4=0$$,
    $$ b^{ 2 }-4a$$ will determine the nature of roots.
    $$\Longrightarrow b^{ 2 }-4ac=a^{ 2 }-4(1)(-4)$$
    $$ \Longrightarrow b^{ 2 }-4ac=a^{ 2 }+16>0$$
    $$\therefore$$ roots are real and distinct.
  • Question 6
    1 / -0
    If the roots of the equation $$\displaystyle (a^{2}+b^{2})x^{2}-2b(a+c)x+(b^{2}+c^{2})=0$$ are equal then =
    Solution
    $$\displaystyle (a^{2}+b^{2})x^{2}-2b(a+c)x+(b^{2}+c^{2})=0$$
    Roots are real and equal $$\therefore$$ $$D = 0$$
    $$D=b^2-4ac=0$$
    $$\displaystyle \Rightarrow [-2b(a+c)]^{2}-4(a^{2}+b^{2})(b^{2}+c^{2})=0$$
    $$\displaystyle \Rightarrow b^{2}(a^{2}+c^{2}+2ac)-(a^{2}b^{2}+a^{2}c^{2}+b^{4}+c^{2}c^{2})=0$$
    $$\displaystyle \Rightarrow b^{2}a^{2}+b^{2}c^{2}+2acb^{2}-a^{2}b^{2}-a^{2}c^{2}-b^{4}-b^{2}c^{2}=0$$
    $$\displaystyle \Rightarrow 2acb^{2}-a^{2}c^{2}-2acb^{2}=0$$
    $$\displaystyle \Rightarrow (b^{2}-ac)^{2}=0$$
    $$\displaystyle \Rightarrow b^{2}=ac$$
  • Question 7
    1 / -0
    If the equation $$\displaystyle x^{2}-2kx-2x+k^{2}=0 $$ has equal roots the value of k must be
    Solution
    The equation $$x^{ 2 }-2(k+1)x+k^{ 2 }=0$$ will have equal roots when $$D=0$$,
    $$D=b^{ 2 }-4ac,$$
    $$\Longrightarrow 2(k+1)^{ 2 }-4(1)(k)^{ 2 }=(k+1)^{ 2 }-k^{ 2 }$$
    $$\therefore \Longrightarrow 2k+1=0\\ k=-1/2$$
  • Question 8
    1 / -0
    For what value of k will $$\displaystyle x^{2}-\left ( 3k-1 \right )x+2k^{2}+2k=11$$ have equal roots?
    Solution
    For this equation to have equal roots
    $$b^{2}=4ac$$   Here $$a=1 ,b=-(3k-1)$$  and $$c=2k^{2}+2k-11$$
    Then $$\left ( -(3k-1) \right )^{2}=4\left ( 1(2k^{2}+2k-11) \right )$$
    $$\Rightarrow 9k^{2}-8k+1=8k^{2}+8k-44$$
    $$\Rightarrow 9k^{2}-8k^{2}-6k-8k+1+44=0$$
    $$\Rightarrow k^{2}-14k+45=0$$
    $$\Rightarrow k^{2}-9k-5k+45=0$$
    $$\Rightarrow k(k-9)-5(k-9)=0$$
    $$\Rightarrow (k-9)(k-5)=0$$ 
    Then  $$k-9=0 \ or\  k=9$$
    Or $$ k-5=0 \ or\  k=5$$
    Then values are $$9,5$$
  • Question 9
    1 / -0
    Find the value of $$k$$ for which the equation $${x}^{2}-6x+k=0$$ has distinct roots.
    Solution
    Equation $${x}^{2}-6x+k=0$$ has
    discriminant $$D={b}^{2}-4ac$$
    $$=36-4k$$
    For real roots $$D>0$$ 
    $$\Rightarrow$$ $$36-4k>0$$
    $$\Rightarrow$$ $$k<9$$
  • Question 10
    1 / -0
    If $${z}_{1},{z}_{2}$$ are two complex numbers and $$c>0$$ such that $${ \left| { z }_{ 1 }+{ z }_{ 2 } \right|  }^{ 2 }\le \left( 1+c \right) { \left| { z }_{ 1 } \right|  }^{ 2 }+k{ \left| { z }_{ 2 } \right|  }^{ 2 },$$ then $$k=$$
    Solution
    Since Re $$\displaystyle \left( { z }_{ 1 }{ \overline { z }  }_{ 2 } \right) \le \left| { z }_{ 1 }{ \overline { z }  }_{ 2 } \right| $$

    $$\displaystyle \therefore { \left| { z }_{ 1 } \right|  }^{ 2 }+{ \left| { z }_{ 2 } \right|  }^{ 2 }+Re\left( { z }_{ 1 }{ \overline { z }  }_{ 2 } \right) \le { \left| { z }_{ 1 } \right|  }^{ 2 }+{ \left| { z }_{ 2 } \right|  }^{ 2 }+2\left| { z }_{ 1 }{ \overline { z }  }_{ 2 } \right| $$

    $$\displaystyle \Rightarrow { \left| { z }_{ 1 }+{ z }_{ 2 } \right|  }^{ 2 }\le { \left| { z }_{ 1 } \right|  }^{ 2 }+{ \left| { z }_{ 2 } \right|  }^{ 2 }+2\left| { z }_{ 1 } \right| \left| { z }_{ 2 } \right| $$    ...(1)

    Also, Since $$A.M.\ge G.M.$$

    $$\displaystyle \therefore \frac { { \left( \sqrt { c } \left| { z }_{ 1 } \right|  \right)  }^{ 2 }+{ \left( \frac { 1 }{ \sqrt { c }  } \left| { z }_{ 2 } \right|  \right)  }^{ 2 } }{ 2 } \ge { \left\{ c.{ \left| { z }_{ 1 } \right|  }^{ 2 }.\frac { 1 }{ c } { \left| { z }_{ 2 } \right|  }^{ 2 } \right\}  }^{ \frac { 1 }{ 2 }  }\left( \because c>0 \right) $$

    $$\displaystyle \Rightarrow c{ \left| { z }_{ 1 } \right|  }^{ 2 }+\frac { 1 }{ c } { \left| { z }_{ 1 } \right|  }^{ 2 }\ge 2\left| { z }_{ 1 } \right| \left| { z }_{ 2 } \right| $$

    $$\displaystyle \therefore { \left| { z }_{ 1 } \right|  }^{ 2 }+{ \left| { z }_{ 1 } \right|  }^{ 2 }+2\left| { z }_{ 1 } \right| \left| { z }_{ 2 } \right| \le { \left| { z }_{ 1 } \right|  }^{ 2 }+{ \left| { z }_{ 2 } \right|  }^{ 2 }+c{ \left| { z }_{ 1 } \right|  }^{ 2 }+\frac { 1 }{ c } { \left| { z }_{ 2 } \right|  }^{ 2 }$$

    $$\displaystyle \Rightarrow { \left| { z }_{ 1 } \right|  }^{ 2 }+{ \left| { z }_{ 2 } \right|  }^{ 2 }+2\left| { z }_{ 1 } \right| \left| { z }_{ 2 } \right| \le \left( 1+{ c }^{ -1 } \right) \left( { \left| { z }_{ 2 } \right|  }^{ 2 } \right) $$     ...(2)

    From (1) and (2), we get

    $$\displaystyle { \left| { z }_{ 1 }+{ z }_{ 2 } \right|  }^{ 2 }\le \left( 1+c \right) { \left| { z }_{ 1 } \right|  }^{ 2 }+\left( 1+{ c }^{ -1 } \right) { \left| { z }_{ 2 } \right|  }^{ 2 }$$

    $$\displaystyle \therefore k=1+{ c }^{ -1 }$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now