Self Studies

Complex Numbers and Quadratic Equations Test -7

Result Self Studies

Complex Numbers and Quadratic Equations Test -7
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If z=23iz=2-3i then z24z+13=z^2-4z+13=
    Solution
    z=23iz=2-3i
    z2=223212iz^{2}=2^{2}-3^{2}-12i
    =512i=-5-12i
    z24z+13\therefore z^{2}-4z+13
    =(512i)4(23i)+13=(-5-12i)-4(2-3i)+13
    =512i8+12i+13=-5-12i-8+12i +13
    =13+13=-13+13
    =0=0

  • Question 2
    1 / -0
    The complex number 1+2i1i\displaystyle \frac{1+2i}{1-i} lies in the quadrant :
    Solution
    Let  z=1+2i1iz =\dfrac{1+2i}{1-i}

    z=(1+2i)1i×1+i1+i\Rightarrow z =\dfrac{(1+2i)}{1-i}\times \dfrac{1+i}{1+i}

    =1+2i+i+2i21i2= \dfrac{1+2i+i+2i^2}{1-i^2}

    =1+3i21+1=\dfrac{1+3i-2}{1+1} ............ [i2=1][\because i^2 = -1]

    z=1+3i2\Rightarrow z =\dfrac{-1+3i}{2}

    =12+32i =-\dfrac{1}{2}+\dfrac{3}{2}i
    =x+iy=x+iy
    Clearly x<0x<0 and y>0y>0
    Hence zz lies in II\text{II} quadrant
  • Question 3
    1 / -0
    375=\sqrt{-3}\sqrt{-75}=
    Solution
    3×75=3×(1)75×(1)\sqrt{-3}\times\sqrt{-75}=\sqrt{3\times(-1)}\sqrt{75\times(-1)}
    =3i×75i=\sqrt{3}i\times\sqrt{75}i
    =225i2=\sqrt{225}i^{2}
    =15= - 15
  • Question 4
    1 / -0
    The sum of two complex numbers a+iba + ib and c+idc +id is a real number if
    Solution
    It is given that 

    z1=a+ibz_{1}=a+ib and 

    z2=c+idz_{2}=c+id

    Then
    z1+z2=(a+c)+i(b+d)z_{1}+z_{2}=(a+c)+i(b+d)

    Now
    (z1+z2)(z_{1}+z_{2}) is purely real.

    Then the imaginary part has to be 00.

    Hence
    b+d=0b+d=0.
  • Question 5
    1 / -0
    The locus of complex number z such that z is purely real and real part is equal to - 2 is
    Solution
    z=x+iyz=x+iy
    (x,y)(x,y)
    zz is purely real and the real part equals 2-2
    y=0\therefore y=0 & x=2x=-2
    z=2z=-2
    Hence, this would be represented by the point (-2,0) on the Argand Plane.
  • Question 6
    1 / -0
    1i1+1i+1\dfrac{1}{i-1}+\dfrac{1}{i+1} is
    Solution
    Let Z=1i1+1i+1Z= \dfrac{1}{i-1}+\dfrac{1}{i+1}

             =i+1+i1(i1)(i+1)=\dfrac{i+1+i-1}{(i-1)(i+1)}

             =i+i(i212)=\dfrac{i+i}{(i^2-1^2)}

             =2i2=\dfrac{2i}{-2}

    Z=i \therefore Z=-i
  • Question 7
    1 / -0
    If (x+iy)(23i)=4+i(x+iy)(2-3i)=4+i then (x, y) =
    Solution
    (x+iy)(23i)=4+i(x+iy)(2-3i)=4+i

    2x(3x)i+(2y)i3yi2=4+i2x-(3x)i+(2y)i-3yi^{2}=4+i

    2x+3yReal+(2y3x)Imaginaryi=4+i\underbrace{2x+3y}_{Real }+\underbrace{(2y-3x)}_{Imaginary }i=4+i

    Comparing the real & imaginary parts,
    2x+3y=42x+3y=4--------------------------(1)
    2y3x=12y-3x=1----------------------------(2)
    Solving eq(1)  &  eq(2),
    4x+6y=84x+6y=8
    9x+6y=3-9x+6y=3
    13x=5x=51313x=5\Rightarrow x=\dfrac{5}{13}
    y=1413y=\dfrac{14}{13}
    (x,y)=(513,1413)\therefore (x,y)=\left (\dfrac{5}{13},\dfrac{14}{13} \right )

  • Question 8
    1 / -0
    The argument of every complex number is
    Solution
    z=x+iyz=x+iy
    amplitude =tan1yx= tan^{-1}\frac{y}{x}
    \Rightarrow amplitude =θ±2kπ=\theta \pm 2k\pi     where   θϵ[π,π]\theta \epsilon \left [ -\pi ,\pi \right ]   kϵR\forall k\epsilon R
    since kϵRk\epsilon R
    \Rightarrow Amplitude of any complex number is many valued.
  • Question 9
    1 / -0
    The sum of two complex numbers a+iba + ib and c+idc+ id is purely imaginary if
    Solution
    It is given that
    z1=a+ibz_{1}=a+ib and
    z2=c+idz_{2}=c+id
    z1+z2=(a+c)+i(b+d)z_{1}+z_{2}=(a+c)+i(b+d)
    z1+z2z_{1}+z_{2} is purely imaginary.       (Given)
    Then the real part has to be  00.
    Hence
    a+c=0a+c=0.
  • Question 10
    1 / -0
    For a>0a > 0, arg (ia)=(ia) =
    Solution
    z=0+iaz= 0 + ia
    arg(z)=arg(ia)=tan1a0\therefore arg(z) = arg (ia) = \tan^{-1} \cfrac a0
      = π2\cfrac {\pi}{2}        ...(since a is greater than or equal to zero)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now