Self Studies

Binomial Theorem Test - 11

Result Self Studies

Binomial Theorem Test - 11
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the sum of binomial coefficient in the expansion $$(1+x)^{n}$$ is $$256$$, then $$n$$ is
    Solution
    $$(1+x)^n=C_0+C_1x+\cdots+C_nx^n$$
    Sum of coefficients is $$C_0+C_1+\cdots+C_n=2^n\\C_0+C_1+\cdots+C_n=256\\2^n=256\\2^n=2^8\\n=8$$
  • Question 2
    1 / -0
    The coefficient of $${ x }^{ 3 }$$ in the polynomial $$(x-1) (x-2) (x-4)$$ is
    Solution

  • Question 3
    1 / -0
    If the constants term in the expansions of $$(\sqrt{x}-\dfrac{k}{x^2})^{10}$$ is $$405$$, then what can be the value of $$k$$ ?
    Solution
    Given,

    $$\left ( \sqrt{x}-\dfrac{k}{x^2} \right )^{10}$$

    $$T_{r+1}={}^{10}C_r(\sqrt{x})^{10-r}\left ( -\dfrac{k}{x^2} \right )^r$$

    $$=^{10}C_r(x)^{\frac{1}{2}(10-r)}(-k)^rx^{-2r}$$

    $$=^{10}C_r(x)^{\frac {10-5r}{2}}(-k)^r$$

    For a constant term, the condition is 

    $$=x^0$$

    $$\Rightarrow \dfrac {10-5r}{2}=0$$

    $$\Rightarrow r=2$$

    $$T_{2+1}=^{10}C_2(-k)^2$$

    Given,

    $$405=^{10}C_2(-k)^2$$

    $$\dfrac{10 \times 9 \times 8!}{2! \times 8!}(-k)^2=405$$

    $$45k^2=405$$

    $$k^2=9\Rightarrow k= \pm 3$$
  • Question 4
    1 / -0
    The middle term in $${\left( {{x^2} + \dfrac{1}{{{x^2}}} + 2} \right)^n}$$ is 
    Solution
    $$(x^2+\cfrac{1}{x^2}+2)^n=(x+\cfrac{1}{x})^{2n}$$
    Middle term $$=(n+1)th \quad term$$
    $$T_{n+1}= { { ^{ 2n }{ C } } }_{ n }(x)^n(\cfrac{1}{x})^n\\ \quad=\cfrac{2n!}{(n!)^2}$$

  • Question 5
    1 / -0
    The $$5$$th term in the expansion of $$ \left(2x^2 + \dfrac{3}{x}\right)^5 $$ is
    Solution
    we k.n.t $$(r+1)^{th}$$ term in expansion of  $$(a+b)^n$$ is $$^nc_ra^{n-r}b^r$$
    $$\Rightarrow T_{r+1}=^nc_ra^{n-r}b^r$$

    Here $$a=2x^2$$ and $$b=\dfrac{2}{x}$$ and $$n=5$$

    5th term = $$T_5=^5c_4a^{5-4}b^4=5ab^4=5(2x^2)(\dfrac{3}{x})^4=(5*2*3^4)(x^{2-4}=810x^{-2}$$

    $$\therefore $$ The $$5$$th term in expansion of $$(2x^2+\dfrac{3}{x})^4$$ is $$810x^{-2}$$.
  • Question 6
    1 / -0
    If $$n$$ is a positive integer, then the number of terms in the expansion of $$ (x+a)^n $$ is
    Solution
    In binomial expansion the terms goes from $$n{ C }_{ 0 }{ x }^{ n }$$ to $$n{ C }_{ n }{ a }^{ n }$$ i.e the base of $$C$$ goes from $$0$$ to $$n$$ and this shows that there must be $$(n+1)$$ terms. 
  • Question 7
    1 / -0
    The $$ (n+1)^{th} $$ term from the end in $$ \left(x-\dfrac{1}{x}\right)^{3n} $$ is
    Solution
    $$r^{th}$$ term from end means $${ (n+1 -r+1) }^{ th }$$ term from start.

    $$r^{th}$$ term from begning in expansion of $${ (x-a) }^{ n }$$ is given by 

    $${ T }_{ r }\quad =\quad ({ -1 })^{ r-1 }\binom{n}{ r-1 }{ x }^{ n-r+1 }{ a }^{ r-1 }$$

    Here, no. of terms = $$3n+1$$ 
    $$r^{th}$$ term from the end = $$(3n+1) - (n+1) + 1 = {2n+1}^{th}$$ term from the beginning

    $$\therefore T_{2n+1} = \quad ^{3n}{C}_{2n}{x}^{n}\dfrac{1}{x^{2n}} = \quad^{3n}{ C }_{ n }{ x }^{ -n }$$
  • Question 8
    1 / -0
    In any binomial expansion, the number of terms are
    Solution
    Bi-nomial, involves summation of two terms.
    Let the terms be $$x$$ and $$y$$.
    Therefore a binomial expansion can be of the form, $$(x+y)^{n}$$. where $$n\geq 1$$
    If $$n=1$$, we get only two terms.
    If $$n>1$$ where $$n$$ is an integer, then it gives us in total $$(n+1)$$ terms.
    Thus, number of terms has to be $$\geq 2$$.
  • Question 9
    1 / -0
    The $$4^{th}$$ term in the expansion of $$ \left(\sqrt{x}+\dfrac{1}{x}\right)^{12} $$ is
    Solution
    Expansion is $${ \left( \sqrt { x } +\dfrac { 1 }{ x }  \right)  }^{ 12 }\\$$
    $$T_{ r+1 }={ { 12 }_{ C } }_{ r }{ \left( \dfrac { 1 }{ x }  \right)  }^{ r }.{ \left( \sqrt { x }  \right)  }^{ 12-r }={ { 12 }_{ C } }_{ r }.{ x }^{ 6-1.5r }\\$$ 
    $$4^{ th }$$ term is $$T_{ 4 }={ { 12 }_{ C } }_{ 3 }.{ x }^{ 6-1.5*3 }=220.{ x }^{ \frac { 3 }{ 2 }  }\\$$
    Correct answer is option B.
  • Question 10
    1 / -0
    If $$ T_r $$ denotes the $$ r^{th} $$ term  in the expansion of $$\displaystyle \left(x + \frac{1}{x} \right)^{23} $$, then
    Solution
    We know that, general term expression for $$(a+b)^n$$
    $$T_{r+1} =^{n}C_{r} \times a^{n} \times \left(b \right) ^{n-r} $$

    $$T_{12} =^{23}C_{11} \times x^{12} \times \left(\dfrac{1}{x} \right) ^{11} $$
    $$T_{12} = ^{23}C_{11} x$$
    $$T_{13} =^{23}C_{12} \times x^{11} \times \left(\dfrac{1}{x} \right)^{12} $$ 
    $$T_{13} = ^{23}C_{12} \left(\dfrac{1}{x} \right)$$

    $$^{23}C_{12}=^{23}C_{11}$$ ....as $$(11+12=23)$$

    $$T_{12} = ^{23}C_{11} x^2 \times \dfrac 1x$$
    $$T_{12} =x^2 \times  ^{23}C_{12}  \times \dfrac 1x$$

    $$T_{12} =x^2 \times  T_{13}$$


    Hence, option B is the  correct answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now