Self Studies

Binomial Theorem Test - 12

Result Self Studies

Binomial Theorem Test - 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The seventh term in the expansion of
    $$ \left(4x-\dfrac{1}{2\sqrt{x}}\right)^{13} $$ is
    Solution
    $$(x-a)^{n}={}^{n}C_{0} x^{n}-{}^{n}C_{1}x^{n-1}a+{}^{n}C_{2} x^{n-2} a^{2}-.....$$
    $$(r+1)$$th term in the expansion of $${ (x-a) }^{ n }$$ is given by 

    $${ T }_{ r+1 }= ({ -1 })^{ r }\ \ { }^{n}{ C }_{ r }{ x }^{ n-r }{ a }^{ r }$$

    Using above formula for $$ \left(4x-\dfrac{1}{2\sqrt{x}}\right)^{13}$$, seventh term in the expansion is
    $$T_{7} =T_{6+1} =({ -1 })^{ 6 }\ \ { }^{13}{ C }_{ 6 }(4x)^{13-6}\left(\dfrac{1}{2\sqrt{x}}\right)^{6}$$
    $$= { }^{13}{ C }_{ 6 }(4x)^{7}\left(\dfrac{1}{2^{6}(\sqrt{x})^{6}}\right)$$
    $$= { }^{13}{ C }_{ 6 } \cdot 2^{14}\cdot x^{7}\left(\dfrac{1}{2^{6}x^{3}}\right)$$
    $$= { }^{13}{ C }_{ 6 } \cdot 2^{8}\cdot x^{4}$$
  • Question 2
    1 / -0
    The coefficients of $$ x^p $$ and $$ x^q $$ ($$p$$ and $$q$$ are positive integers) in the expansion of $$ (1 + x)^{p+q} $$ are
    Solution
    The general term is 

    $$t_{r+1}=^{p+q}C_{r}x^{r}$$

    For coefficient of $$x^p$$, $$r=p$$ and hence coefficient is $$^{p+q}C_{p}$$

    For coefficient of $$x^q$$, $$r=q$$ and hence coefficient is $$^{p+q}C_{q}$$

    $$^{p+q}C_{p}$$ = $$^{p+q}C_{q}$$
  • Question 3
    1 / -0
    In the expansion of $$ (3+ax)^9 $$ coefficients of $$ x^2 $$ and $$ x^3 $$ are equal then $$a =$$
    Solution
    It is known that $${ \left( r+1 \right)  }^{ th }$$ term, $$({T}_{r+1}),$$ in the binomial expansion of $${ \left( a+b \right)  }^{ n }$$ is given by $${ T }_{ r+1 }=^{ n }{ { C }_{ r } }{ a }^{ n-r }{ b }^{ r }.$$
    Assuming that $${x}^{2}$$ occurs in the $${ \left( r+1 \right)  }^{ th }$$ term in the expansion of $${ \left( 3+ax \right)  }^{ 9 },$$ we obtain 
    $${ T }_{ r+1 }=^{ 9 }{ { C }_{ r } }{ \left( 3 \right)  }^{ 9-r }=^{ 9 }{ { C }_{ r } }{ \left( 3 \right)  }^{ 9-r }{ a }^{ r }{ x }^{ r }$$
    Comparing the indices of $$x$$ in $${x}^{2}$$ and in $${T}_{r+1},$$ we obtain $$r=2.$$
    Thus, the coefficients of $${x}^{2}$$ is $$\displaystyle ^{ 9 }{ { C }_{ 2 }{ \left( 3 \right)  }^{ 9-2 } }{ a }^{ 2 }=\frac { 9! }{ 2!7! } { \left( 3 \right)  }^{ 7 }{ a }^{ 2 }=36{ \left( 3 \right)  }^{ 7 }{ a }^{ 2 }.$$
    Arruming that $${x}^{3}$$ occurs in the $${ \left( k+1 \right)  }^{ n }$$ term in the expansion of $${ \left( 3+ax \right)  }^{ 9 },$$ we obtain 
    $${ T }_{ k+1 }=^{ 9 }{ { C }_{ k } }{ \left( 3 \right)  }^{ 9-k }{ \left( ax \right)  }^{ k }=^{ 9 }{ { C }_{ k } }{ \left( 3 \right)  }^{ 9-k }{ a }^{ k }{ x }^{ k }$$
    Comparing the indices of $$x$$ in $${x}^{3}$$ and $${T}_{k+1},$$ we obtain $$k=3$$
    Thus, the coefficient of $${x}^{3}$$ is $$\displaystyle ^{ 9 }{ { C }_{ 3 } }{ \left( 3 \right)  }^{ 9-3 }{ a }^{ 3 }=\frac { 9! }{ 3!6! } { \left( 3 \right)  }^{ 6 }{ a }^{ 3 }=84{ \left( 3 \right)  }^{ 6 }{ a }^{ 3 }$$
    In is given that the coefficient of $${x}^{2}$$ and $${x}^{3}$$ are the same,
    $$\displaystyle 84{ \left( 3 \right)  }^{ 6 }{ a }^{ 3 }=36{ \left( 3 \right)  }^{ 7 }{ a }^{ 2 }\Rightarrow 84a=36\times 3\Rightarrow a=\frac { 36\times 3 }{ 84 } =\frac { 104 }{ 84 } \Rightarrow a=\frac { 9 }{ 7 } $$
    Thus, the required value of $$a$$ is $$\displaystyle \frac{9}{7} $$
  • Question 4
    1 / -0
    If the coefficient of $$ x^7 $$ in $$(ax^2 + \dfrac{1}{bx})^{11} $$ is equal to the coefficient of $$ x^{-7} $$ in $$ (ax - \dfrac{1}{bx^2})^{11} $$ then
    Solution
    General term $$T_{r+1}$$ in the expansion of $$(a+b)^{n}$$ is given by 

    $$T_{r+1}=\:^nC_{r}a^{n-r}b^r$$

    Applying to $$\left(ax^2+\dfrac{1}{bx}\right)^{11}$$, we get

    $$T_{r+1}={}^{11}C_{r}x^{22-3r}a^{11}(ab)^{-r}$$ ...(i)

    Therefore $$22-3r=7$$ for coefficient of $$x^7$$

    $$\Rightarrow r=5$$

    Thus, $$(i)$$ reduces to

    $$T_{6}=\:^{11}C_{5}x^{7}a^{11}(ab)^{-5}$$

    Similarly applying to $$\left(ax-\dfrac{1}{bx^2}\right)^{11}$$, we get

    $$T_{r+1}=(-1)^r\:^{11}C_{r}x^{11-3r}a^{11}(ab)^{-r}$$ ...(ii)

    Therefore $$11-3r=-7$$ for coefficient of $$x^{-7}$$

    $$\Rightarrow r=6$$

    Equation $$(ii)$$ reduces to

    $$T_{7}=\:^{11}C_{6}x^{-7}a^{11}{ab}^{-6}$$ ...(b)

    Hence applying the given condition we get

    $$\:^{11}C_{6}a^{11}(ab)^{-6}=\:^{11}C_{5}a^{11}(ab)^{-5}$$ from(a,b)

    $$ab=1$$

    Hence answer is C
  • Question 5
    1 / -0
    If the fourth term in the expansion of $$\left  (px+\dfrac{1}{x}\right)^n $$ is $$\dfrac52$$, then $$(n, p) = $$
    Solution
    Given expression is $$(px+x^{-1})\:^n$$
    General term  $$T_{r+1}=\:^nC_{r}a^{n-r}b^r$$
    Applying to the above question, we get
    $$T_{3+1}=\:^nC_{3}(px)^{n-3}x^{-3}$$
    $$=\:^nC_{3}(p)^{n-3}x^{n-6}$$ ...(i)
    Since the fourth term is independent of $$x$$,
    $$n-6=0$$
    $$n=6$$
    Substituting this value in (i), we get
    $$\:^6C_{3}(p)^{3}=\dfrac{5}{2}$$
    $$\Rightarrow 20p^3=\dfrac{5}{2}$$
    $$\Rightarrow p^3=\dfrac{1}{8}$$
    $$\Rightarrow  p=\dfrac{1}{2}$$
    Therefore $$(n,p)=\left(6,\dfrac{1}{2}\right)$$
  • Question 6
    1 / -0
    In the binomial expansion of $$ \left (  \sqrt{y} + \dfrac{1}{2\sqrt[4]{y}} \right )^8 $$, the terms in the expansion in which the power of $$y$$ is a natural number are:
    Solution
    $$T_{r+1}=\:^nC_{r}a^{n-r}b^r$$
    Applying to the above question, we get
    $$T_{r+1}=\:^nC_{r}y^{4-\frac{r}{2}}2^{-r}y^{\frac{r}{4}}$$
    Power of $$y$$ $$=4-\displaystyle \frac{3r}{4}$$
    For the power of $$y$$ to be natural $$4-\displaystyle \frac{3r}{4}>0$$ and $$4-\displaystyle \frac{3r}{4}$$ should not be a fraction.
    Hence, $$r$$ must be a multiple of $$4$$ or $$0$$. 
    These conditions are met for $$r=0$$ and $$r=4$$.
    For $$r=8$$ , the power of $$y$$ would be negative 
    Hence the terms are $$T_{0+1}$$ and $$T_{4+1}$$ i.e. $$T_{1},T_{5}$$
  • Question 7
    1 / -0
    In the expansion of $$ (2+\dfrac{x}{3})^n $$, coefficients of $$ x^7 $$ and $$ x^8 $$ are equal. Then $$ n = $$
    Solution
    We know, $$T_{r+1}=\:^nC_{r}a^{n-r}b^r$$
    Applying to the above question, we get
    $$T_{r+1}=\:^nC_{r}2^{n-r}3^{-r}x^{r}$$
    Applying the given conditions, i.e. coefficient of $$x^7$$ is equal to coefficient of $$x^8$$
    Therefore $$\:^nC_{7}2^{n-7}3^{-7}=\:^nC_{8}2^{n-8}3^{-8}$$
    $$\Rightarrow 6\:^nC_{7}=\:^nC_{8}$$
    $$\Rightarrow \dfrac{6.(n)!}{(n-7)!7!}=\dfrac{(n)!}{(n-8)!8!}$$
    $$\Rightarrow 48=n-7$$
    $$\Rightarrow n =55$$
  • Question 8
    1 / -0
    The middle term in the expansion of $$ \left (\displaystyle \frac{x^{\frac{3}{2}}}{\sqrt{a}} - \frac{y^{\frac{5}{2}}}{b^{\frac{3}{2}}} \right )^8 $$ is 
    Solution

  • Question 9
    1 / -0
    The middle term in the expansion of $$ \left ( x + \dfrac{1}{x} \right )^{10} $$ is
    Solution
    Middle term $$=\dfrac{n}{2}+1$$ $$=6^{th} $$ term
    Now consider the following:
    $$T_{r+1}=\:^nC_{r}a^{n-r}b^r$$...(i)
    Where $$T$$ represents the term.
    Here the middle term is the $$6^{th}$$ term.
    Hence $$r+1=6$$
    $$\therefore r=5$$
    substituting in (i), we get
    $$\:^{10}C_{5}x^{10-5}\frac{1}{x^5}$$
    $$=\:^{10}C_{5}x^{5}x^{-5}$$
    $$=\:^{10}C_{5}$$
    Hence, answer is B.
  • Question 10
    1 / -0
    The middle term in the expansion of $$ (1+x)^{2n} $$ is
    Solution
    Middle term $$=\dfrac{N}{2}+1$$
    $$=\dfrac{2n}{2}+1$$
    $$=(n+1)^{th}$$ term
    Now consider the following,
    $$T_{r+1}=\:^nC_{r}a^{n-r}b^r$$...(i)
    Where $$T$$ represents the term
    Here the middle term is the $$(n+1)^{th}$$ term
    Hence $$r+1=n+1$$
    $$\therefore r=n$$
    Substituting in (i), we get $$\:^{2n}C_{n}1^{2n-n}x^{n}$$
    $$=\:^{2n}C_{n}x^{n}$$
    Hence answer is D
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now