Self Studies

Binomial Theore...

TIME LEFT -
  • Question 1
    1 / -0

    If the coefficients of $$ (r+2)^{th} $$ and $$ (2r+1) ^{th}$$ terms $$ (r \neq 1) $$ are equal in the expansion of $$ (1+x)^{43} $$, then $$ r = $$

  • Question 2
    1 / -0

    The middle term of $$ \left ( x - \dfrac{1}{x} \right )^{2n+1} $$ is

  • Question 3
    1 / -0

    The ratio of the coefficient of $$ x^{10} $$ in $$ (1-x^2)^{10} $$ and  the term independent of $$x$$ in $$ \left ( x - \dfrac{2}{x} \right )^{10} $$ is

  • Question 4
    1 / -0

    The $$3$$rd, $$4$$th and $$5$$th terms in the expansion of $$ (1+x)^n $$ are $$60, 160$$ and $$240$$ respectively, then $$ x = $$

  • Question 5
    1 / -0

    Coefficient of $$ x^{16} $$ in $$ (1+x+x^2)(1-x)^{15} $$

  • Question 6
    1 / -0

    The number of terms in the expansion of $$ (1+5\sqrt{2}x)^9 + (1-5\sqrt{2}x)^9 $$ is :

  • Question 7
    1 / -0

    Coefficient of $$ x^5 $$ in $$ (1+x^2)^5(1+x)^4 $$ is

  • Question 8
    1 / -0

    A. $$ ^{2n}C_n = C_0^2 + C_1^2 + C_2^2 + C_3^2 + \dots \dots + C_n^2 $$

    B. $$ ^{2n}C_n = $$ term independent of $$x$$ in $$ (1+x)^n \left(1+\frac{1}{x} \right)^n $$

    C. $$ ^{2n}C_n = \dfrac{1.3.5.7 \ldots \ldots (2n-1)}{n!} $$ then

  • Question 9
    1 / -0

    The total number of terms in the expansion of $$ (x+a)^{100}+(x-a)^{100} $$ after simplification is

  • Question 10
    1 / -0

    Coefficient of $$ x^{10} $$ in $$ (1+2x^4)(1-x)^8 $$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now