Self Studies

Binomial Theorem Test - 17

Result Self Studies

Binomial Theorem Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the expansion of $$(1+x)^{n}.(1+y)^{n}.(1+\mathrm{z})^{n}$$ the sum of the coefficients of the terms of degree $$r$$ is
    Solution
    The given expression contains $$3n$$ factors
    Using combination to choose $$r$$ brackets out of $$3n$$ brackets for a term of degree $$r$$, we get
    $$\:^{3n}C_r$$
    Hence, answer is option B
  • Question 2
    1 / -0

    Assertion (A) : Number of the disimilar terms in the sum of expansion $$(x+a)^{102}+(x-a)^{102}$$ is $$206$$

    Reason (R) : Number of terms in the expansion of $$(x+b)^{n}$$ is n + 1



    Solution
    $$(x+a)^{102}+(x-a)^{102}$$
    Since a is constant let $$a=1$$
    Therefore the above question can be re-written as
    $$(1+x)^{102}+(1-x)^{102}$$
    $$=[1+\:^{102}C_{1}x^1+\:^{102}C_{2}x^2...+\:^{102}C_{102}x^{102}]+[1-\:^{102}C_{1}x^1+\:^{102}C_{2}x^2-\:^{102}C_{3}x^3...+\:^{102}C_{102}x^{102}]$$
    $$=2[1+\:^{102}C_{2}x^2+\:^{102}C_{2}x^4...+\:^{102}C_{102}x^{102}]$$ ...(i)
    Hence number of dissimilar terms in Eq(i) will be $$\dfrac{102}{2}+1$$
    $$=52$$ terms.
    Hence A is false.
    Reason is true. 
    Hence option D is the correct option.
  • Question 3
    1 / -0
    If the coefficients of $$r^{th}$$ term and $$(r+1)^{th}$$ term in the expansion of $$(1+x)^{20}$$ are in the ration 1 : 2, then $$r=$$
    Solution
    The ratio of the coefficient of rth term and (r+1)th term 1 : 2
    $$\Rightarrow ^{20}C_{r-1}  :  ^{20}C_r = 1: 2$$
    $$\Rightarrow \displaystyle \frac{r}{21-r} = \frac{1}{2} \Rightarrow 2r = 21-r$$
    $$\Rightarrow r =7$$
  • Question 4
    1 / -0
    The coefficient of $$x^4$$ in $$\displaystyle \left ( \frac{x}{2} - \frac{3}{x^2} \right )^{10}$$ is
    Solution
    $$\displaystyle \frac{10 \times 1- 4}{1+2} = \frac{10-4}{3} = \frac{6}{3}=2$$
    Coefficient of $$x^4$$ is $$^{10}C_2 \left ( \frac{1}{2} \right )^{10-2}(-3)^2$$
    $$\displaystyle \frac{10 \times 9}{2} \cdot \frac{1}{2^8} \cdot 3^2 = \frac{10 \times 81}{2 \times 2^8}$$
    $$\displaystyle \frac{5 \times 81}{256} = \frac{405}{256}$$
  • Question 5
    1 / -0
    The coefficient of the $$8$$th term in the expansion of $$(1+x)^{10}$$ is
    Solution
    $$(1+x)^{10}=$$ $$^{10}C_0+\,^{10}C_1x+\,^{10}C_2x^2+........+\,^{10}C_7x^7+\,^{10}C_8x^8+\,^{10}C_9x^9+\,^{10}C_{10}x^{10}$$
    So here, first term is $$^{10}C_0$$ then $$8^{th}$$ term will be $$10C_7x^7.$$
    $$\Rightarrow$$  Coefficient of the $$8^{th}$$ term $$=\,^{10}C_7$$

                                                       $$=\dfrac{10!}{7!3!}$$

                                                       $$=\dfrac{10\times 9\times 8\times 7!}{7!\times 3\times 2\times 1}$$

                                                       $$=120$$
  • Question 6
    1 / -0
    If $$T_r$$ denotes the rth term in the expansion of $$\displaystyle \left ( x+\frac{1}{y} \right)^{23}$$ then
    Solution
    $$T_{12} = ^{23} C_{11}x^{12} \displaystyle \left ( \frac{1}{y} \right)^{11} = ^{23}C_{11} \frac{x^{12}}{y^{11}}$$,
    $$T_{13}=^{23}C_{12} x^{11} \displaystyle \left ( \frac{1}{y} \right)^{12} = ^{23}C_{11}\frac{x^{11}}{y^{12}}$$,
    $$T_{12} = xy \displaystyle \left ( ^{23}C_{11} \frac{x^{11}}{y^{12}} \right ) = xy T_{13}$$
  • Question 7
    1 / -0
    If the coefficients of $$x^7$$ and $$x^8$$ in $$\displaystyle \left ( 2 + \frac{x}{3} \right )^n$$ are equal then n $$=$$
    Solution
    Coefficient of $$x^7 = coefficient of $$x^8  
    $$\Rightarrow \displaystyle \frac{2^n \cdot ^nC_7}{6^7} = 2^n \cdot \frac{^n C_8}{6^8}$$
    $$\Rightarrow 6 (^nC_7)=^nC_8$$
    $$\Rightarrow 6 \cdot \displaystyle \frac{n!}{(n-7)!7!}=\frac{n!}{(n-8!)8!}$$
    $$\Rightarrow \displaystyle \frac{6}{n-7}=\frac{1}{8}  \Rightarrow n-7 =48$$
    $$\Rightarrow n = 55$$
  • Question 8
    1 / -0
    The coefficient of $$x^3$$ in $$\displaystyle \left ( \sqrt{x^5}+ \frac{3}{\sqrt{x^3}} \right )^5$$ is
    Solution
    $$\displaystyle r=\frac{6 \times \frac{5}{2}-3}{\frac{5}{2}+\frac{3}{2}} = \frac{15-3}{4} =3$$
    $$\therefore $$ Coefficient of $$x^3$$ is $$^6C_3 3^3$$
    $$\displaystyle =\frac{6 \times 5 \times 4}{3 \times 2 \times 1} \cdot 27$$
    $$=5 \times 4 \times 27=540$$
  • Question 9
    1 / -0
    Number of irrational terms in the expansion of $$\left(5^{\dfrac 16} + 2^{\dfrac 18}\right)^{100}$$ is
    Solution
    $$T_{r+1}=\:^{100}C_{r}5^{(r-100)/6}2^{r/8}$$
    Hence we get rational terms when
    $$r=8k$$ where k is an integer and 
    $$\dfrac{8k-100}6$$ is an integer
    $$r=16,40,64,88$$
    Hence we get in total 4 rational terms.
    However, total number of terms will be $$101$$
    Hence total number of irrational terms is $$101-4$$
    $$=97$$ terms.
  • Question 10
    1 / -0
    In the binomial expansion of $$(a-b)^n, n \geq 5$$, the sum of $$5^{th}$$ and $$6^{th}$$ terms is zero, then $$\dfrac ab$$ equals
    Solution
    Given $$T_5+T_6=0$$

    $$\Rightarrow ^nC_4 a^{n-4} \cdot b^4 - ^nC_5 a^{n-5}b^5=0$$

    $$\Rightarrow ^nC_4 a^{n-4}b^4=^nC_5 a^{n-5}b^5$$

    $$\Rightarrow \displaystyle \frac{a^{n-4}b^4}{a^{n-5}b^5}=\frac{^nC_5}{^nC_4}$$

    $$\Rightarrow \displaystyle \frac{a}{b} = \frac{n-5+1}{5} \Rightarrow \frac{a}{b} = \frac{n-4}{5}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now