Self Studies

Binomial Theorem Test - 18

Result Self Studies

Binomial Theorem Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The total number of rational terms in the expansion of $$\left(7^{\frac 13} + 11^{\frac 19}\right)^{6561}$$ is

    Solution
    Total number of rational terms will be
    $$1+\dfrac{6561}{L.C.M(3,9)}$$
    $$=1+\dfrac{6561}{9}$$
    $$=729+1$$
    $$=730$$
  • Question 2
    1 / -0
    If the coefficient of $$x^7$$ in $$\displaystyle \left [ ax^2 + \left ( \dfrac{1}{bx} \right ) \right ]^{11}$$ equals the coefficient of $$x^{-7}$$ in $$\displaystyle \left [ ax - \left ( \dfrac{1}{bx^2} \right ) \right ]^{11}$$, then $$a$$ and $$b$$ satisfy the relation
    Solution
    Coefficient of $$x^7$$ in $$\displaystyle \left ( ax^2 + \frac{1}{bx} \right )^{11}$$ is $$^{11}C_5 a^6 \dfrac{1}{b^5}$$
    Coefficient of $$x^{-7}$$ in $$\displaystyle \left ( ax-\frac{1}{bx^2} \right )^1$$ is $$^{11}C_6 a^5 \displaystyle \frac{1}{b^6}$$
    $$^{11}C_6 a^5 \displaystyle \frac{1}{b^6}={}^{11}C_5 a^6 \displaystyle \frac{1}{b^5}$$
    $$\Rightarrow ab = \displaystyle \frac{^{11}C_6}{^{11}C_5} = \frac{6}{6}=1$$
  • Question 3
    1 / -0
    If the coefficients of $$2^{nd}, 3^{rd}, 4^{th}$$ terms of $$(1+x)^n$$ are in A.P., then $$n=$$
    Solution
    In the expansion $$(1+x)^n$$
    2nd term, $$T_2=^nC_2x$$,
    3rd term, $$T_3=^nC_2 \cdot x^2$$,
    4th term, $$T_4=^nC_3x^3$$
    Given that coefficients of these are in A.P. $$\Rightarrow 2 ^nC_2=^nC_1+^nC_3$$
    $$\Rightarrow \displaystyle \frac{2n(n-1)}{2!} = n+\frac{n(n-1)(n-2)}{3!}$$
    $$\Rightarrow n-1 = 1 + \displaystyle \frac{(n-1)(n-2)}{6}$$
    $$\Rightarrow 6(n-1) = 6+n^2-3n+2$$
    $$\Rightarrow n^2-9n+14=0     \Rightarrow n=7$$
  • Question 4
    1 / -0
    If the middle term in the expansion of $$({ { x }^{ 2 } }+\dfrac{1}{x} )^{ n }$$ is $$924\,{ x }^{ 6 }$$, then find the value of $$n$$
    Solution
    $$T_{r+1}=\:^{n}C_{r}x^{2n-3r}$$
    Therefore power of $$x$$ in the middle term is $$6$$.
    Hence, $$2n-3r=6$$
    $$\implies r=\dfrac{2n}{3}-2$$
    The coefficient is $$924$$.
    Therefore, $$\:^{n}C_{\frac{2n}{3}-2}=924$$
    $$\implies \dfrac{n!}{\left(\dfrac{n}{3}+2\right)!\left(\dfrac{2n}{3}-2\right)!}=924$$
    If we substitute $$n=12$$ (since it is divisible by 3),
    We get $$\:^{n}C_{\frac{2n}{3}-2}$$
    $$=\:^{12}C_{6}$$
    $$=924$$
    Hence $$n=12$$
  • Question 5
    1 / -0
    The middle term in the expansion of $$\left (\dfrac{x}{y}+\dfrac{y}{x}  \right )^{8}$$ is.
    Solution
    The middle term of the expression
    $${ (\dfrac { x }{ y } +\dfrac { y }{ x } ) }^{ 8 }$$
    There are $$9$$ terms in the above expansion.
    Hence the middle term will be the $${ 5 }^{ th }$$ term
    $${ T }_{ 5 }={ C }_{ 4 }^{ 8 }{ (\cfrac { x }{ y } ) }^{ 4 }{ (\dfrac { y }{ x } ) }^{ 4 }= $$$$^{8}\textrm{C}_{4}$$
  • Question 6
    1 / -0
    If the coefficient of (2r + 4)th term is equal to the coefficient of (r - 2)th term in the expansion of $$(1+x)^{18}$$ then r$$=$$
    Solution
    Coefficient of (2r + 4)th term $$=^{18}C_{2r+3}$$
    Coefficient of (r - 2)th term $$=^{18}C_{r-3}$$
    Coefficient of (2r + 4)th term
    $$=$$ coefficient of (r - 2)th term
    $$\Rightarrow ^{18}C_{2r+3}=^{18}C_{r-3}$$
    $$\Rightarrow 2r+3+r-3=18$$
    $$\Rightarrow 3r=18 \Rightarrow r=6$$
  • Question 7
    1 / -0
    The coefficient of the middle term in the binomial expansion in powers of x of $$(1+\alpha x)^4$$ and of $$(1+\alpha x)^6$$ is the same if $$\alpha =$$ 
    Solution

    $${\textbf{Step  - 1: Finding middle term for both the expansion}}$$

                      $${\text{We know that, if n is even, then the middle term of (1  +  ax}}{{\text{)}}^{\text{n}}}{\text{ is given by}}{{\text{ }}^{\text{n}}}{{\text{C}}_{\frac{{\text{n}}}{{\text{2}}}}}{{\text{a}}^{\frac{{\text{n}}}{{\text{2}}}}}{{\text{x}}^{\frac{{\text{n}}}{{\text{2}}}}}$$

                      $$\therefore {\text{ Middle term of (1  + }}{\text{} \alpha}{\text{ x}}{{\text{)}}^{\text{4}}}{\text{  = }}{{\text{ }}^{\text{4}}}{{\text{C}}_{\text{2}}}{{\text{}\alpha }^{\text{2}}}{{\text{x}}^{\text{2}}}$$

                      $${\text{and Middle term of (1  +}}{\text{}  \alpha }{\text{x}}{{\text{)}}^{\text{6}}}{\text{  = }}{{\text{ }}^{\text{6}}}{{\text{C}}_{\text{3}}}{{\text{}\alpha }^{\text{3}}}{{\text{x}}^{\text{3}}}$$

    $${\textbf{Step  - 2: Calculating }}{\textbf{}\alpha }$$

                      $${\text{According to question, coefficients of middle terms of both the expansion are same,}}$$$$\therefore {{\text{ }}^{\text{4}}}{{\text{C}}_{\text{2}}}{{\text{}\alpha }^{\text{2}}}{\text{  = }}{{\text{ }}^{\text{6}}}{{\text{C}}_{\text{3}}}{{\text{}\alpha }^{\text{3}}}$$

                      $$ \Rightarrow {\text{ 6}}{{\text{}\alpha }^{\text{2}}}{\text{  =  20}}{{\text{}\alpha }^{\text{3}}}$$

                      $$ \Rightarrow {\text{ }}\dfrac{{{{\text{}\alpha }^{\text{3}}}}}{{{{\text{}\alpha }^{\text{2}}}}}{\text{  =  }}\dfrac{{\text{6}}}{{{\text{20}}}}$$

                      $$ \Rightarrow {\text{ }\alpha}{\text{   =  }}\dfrac{{\text{3}}}{{{\text{10}}}}$$

    $$\textbf{Hence option C is correct}$$

  • Question 8
    1 / -0
    The coefficient of $$x^4$$ in the expansion of $$\displaystyle \frac{(1-3x)^2}{(1-2x)}$$ is
    Solution
    We need to find coefficient of $$x^4$$ in $$\dfrac {(1-3x)^2}{(1-2x)}$$
    It can be expanded as $$\displaystyle \frac{(1-3x)^2}{1-2x}=(1-3x)^2 (1-2x)^{-1}$$
    $$=(1-6x+9x^2)[1+2x+(2x)^2 + .......]$$
    Therefore, coefficient of $$x^4$$ is $$2^4 - 6(2^3)+9(2^2)$$
    $$=16-48+36=4$$
  • Question 9
    1 / -0
    The numerically greatest term in the expansion of $$(3-2x)^{9}$$ when $$x=1 $$ is
    Solution
    $$ = (3-2x)^{9}$$
    $$ = 3^{9}(1-\dfrac{2x}{3})^{9} $$
    $$ = 3^{9}(1-\dfrac{2}{3})^{9} $$
    let Trt, be the greatest term this exp.
    Tr+1 $$\geq Tr$$
    $$ ^{9}C_{r}\left ( \dfrac{-2}{3} \right )^{r}\geq ^{9}C_{r-1}\left ( \dfrac{-2}{3} \right )^{r-1} $$
    $$ \Rightarrow \dfrac{9!}{r!|9-r|!}\left ( \dfrac{-2}{3} \right )^{r-r+1}\geq\dfrac{9!}{(r-1)!|9-r+1|!} $$
    $$ \Rightarrow \dfrac{1}{r|r-1|!|9-r|!} \left | \dfrac{-2}{3} \right |\geq \dfrac{1}{(r-1)!(10-r)(9-r)!} $$
    $$ = (-2(10-r))\geq (3r) $$
    $$ = 20-2r\geq 3r $$
    $$ = 20\geq 5r $$
    $$ = r\leq 4 $$
    $$T_{5} $$ is the greatest term

  • Question 10
    1 / -0
    If the coefficients of $$5^{th}, 6^{th}, 7^{th}$$ terms of $$(1+x)^n$$ are in A.P., then $$n=$$ 
    Solution
    In the expansion $$(1+x)^n$$
    5th term $$=^nC_4 \cdot x^4$$
    6th term $$=^nC_5x^5$$
    7th term, $$^nC_6x^6$$

    Given coefficient of these terms are in A.P.
    $$\Rightarrow 2 \cdot ^nC_5 = ^nC_4+^nC_6$$

    $$\Rightarrow \displaystyle \frac{2n!}{(n-5)!5!}=\frac{n!}{(n-4)!4!}+\frac{n!}{(n-6)!6!}$$

    $$\Rightarrow \displaystyle \frac{2}{(n-5)5}=\frac{1}{(n-4)(n-5)}+\frac{1}{6.5}$$

    $$\Rightarrow \displaystyle \frac{2}{(n-5)5}=\frac{30+(n-4)(n-5)}{6.5 (n-4)(n-5)}$$

    $$\Rightarrow 12(n-4)=30+(n-4)(n-5)$$

    $$\Rightarrow (12-n+5)(n-4)=30$$

    $$\Rightarrow (17-n)(n-4)=30$$

    $$\Rightarrow -n^2 + 21n -68=30$$

    $$\Rightarrow -n^2 +21n-98=0$$

    $$\Rightarrow n^2-21n+98=0$$

    $$\Rightarrow n^2-14n-7n+98=0$$

    $$\Rightarrow (n-14)(n-7)=0 \Rightarrow n=14$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now