$${\textbf{Step - 1: Finding middle term for both the
expansion}}$$
$${\text{We
know that, if n is even, then the middle term of (1 +
ax}}{{\text{)}}^{\text{n}}}{\text{ is given by}}{{\text{
}}^{\text{n}}}{{\text{C}}_{\frac{{\text{n}}}{{\text{2}}}}}{{\text{a}}^{\frac{{\text{n}}}{{\text{2}}}}}{{\text{x}}^{\frac{{\text{n}}}{{\text{2}}}}}$$
$$\therefore
{\text{ Middle term of (1 + }}{\text{} \alpha}{\text{ x}}{{\text{)}}^{\text{4}}}{\text{ = }}{{\text{
}}^{\text{4}}}{{\text{C}}_{\text{2}}}{{\text{}\alpha
}^{\text{2}}}{{\text{x}}^{\text{2}}}$$
$${\text{and
Middle term of (1 +}}{\text{} \alpha }{\text{x}}{{\text{)}}^{\text{6}}}{\text{ = }}{{\text{
}}^{\text{6}}}{{\text{C}}_{\text{3}}}{{\text{}\alpha }^{\text{3}}}{{\text{x}}^{\text{3}}}$$
$${\textbf{Step - 2: Calculating }}{\textbf{}\alpha }$$
$${\text{According
to question, coefficients of middle terms of both the expansion are same,}}$$$$\therefore
{{\text{ }}^{\text{4}}}{{\text{C}}_{\text{2}}}{{\text{}\alpha
}^{\text{2}}}{\text{ = }}{{\text{
}}^{\text{6}}}{{\text{C}}_{\text{3}}}{{\text{}\alpha }^{\text{3}}}$$
$$
\Rightarrow {\text{ 6}}{{\text{}\alpha }^{\text{2}}}{\text{ =
20}}{{\text{}\alpha }^{\text{3}}}$$
$$
\Rightarrow {\text{ }}\dfrac{{{{\text{}\alpha }^{\text{3}}}}}{{{{\text{}\alpha }^{\text{2}}}}}{\text{ = }}\dfrac{{\text{6}}}{{{\text{20}}}}$$
$$
\Rightarrow {\text{ }\alpha}{\text{ = }}\dfrac{{\text{3}}}{{{\text{10}}}}$$
$$\textbf{Hence option C is correct}$$