Self Studies

Binomial Theorem Test - 19

Result Self Studies

Binomial Theorem Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the sum $$\displaystyle\sum _{ r=1 }^{ n }{ \cfrac { { r }^{ n }{ C }_{ r } }{ { C }_{ r-1 } }  } $$
    Solution
    $$\displaystyle \sum _{ r=1 }^{ n }{ \frac { { r }^{ n }{ C }_{ r } }{ ^{ n }{ C }_{ r-1 } }  } =\sum _{ r=1 }^{ n }{ r\frac { n! }{ r!\left( n-r \right) ! } \times \frac { \left( n-\left( r-1 \right)  \right) !\left( r-1 \right) ! }{ n! }  } $$
    $$\displaystyle =\sum _{ r=1 }^{ n }{ \left( n-r+1 \right)  } =\left( { n }^{ 2 }-\frac { n\left( n-1 \right)  }{ 2 } +n \right) =\frac { n\left( n+1 \right)  }{ 2 } $$
  • Question 2
    1 / -0
    The middle term in the expansion of $$\displaystyle \left ( 1-\frac{1}{x} \right )^{n}\left ( 1-x \right )^{n},$$ is
    Solution
    $$(1-\displaystyle \frac{1}{x})^{n}(1-x)^{n}$$
    $$(\displaystyle \frac{x-1}{x})^{n}(1-x)^{n}$$
    Case I - $$n$$ is even.
    Hence the above expression reduces to
    $$\displaystyle \frac{1}{x^n}(1-x)^{2n}$$
    The middle term will be $$(n+1)^{th}$$ term.
    Hence the coefficient will be.
    $$T_{n+1}=\:^{2n}C_{n}$$
    Case II - $$n$$ is odd.
    Then the above expression reduces to.
    $$-\displaystyle \frac{1}{x^{n}}(1-x)^{2n}$$
    Middle term will be $$(n+1)^{th}$$ term.
    Hence coefficient will be
    $$T_{n+1}=-((-1)^{n}\:^{2n}C_{n})=\:^{2n}C_{n}$$
  • Question 3
    1 / -0
    If A is the coefficient of the middle term in the expansion of $$\displaystyle (1+x)^{2n}$$ and B and C are the coefficients of two middle terms in the expansion of $$\displaystyle(1+x)^{2n-1}$$, then
    Solution
    For $$(1+x)^{2n}$$:
    The middle term will be $$(\frac{N}{2}+1)$$ th term.
    $$=\frac{2n}{2}+1$$ th term
    $$=(n+1)^{th}$$ term
    Hence coefficient of the middle term will be
    $$\:^{2n}C_{n}$$
    $$=A$$.
    For  $$(1+x)^{2n-1}$$,
    The middle terms will be $$(\frac{N+1}{2}+1)$$ and  $$(\frac{N+1}{2})$$ terms
    $$=(\frac{2n}{2}+1)^{th}$$  term and $$\frac{2n}{2}^{th}$$ term.
    $$=(n+1)^{th}$$ term and $$(n)^{th}$$ term.
    Hence coefficient of the middle terms will be
    $$\:^{2n-1}C_{n}=B$$ and $$\:^{2n-1}C_{n-1}=C$$
    By the properties of binomial coefficients.
    $$\:^{2n-1}C_{n-1}+\:^{2n-1}C_{n}$$
    $$=\:^{2n}C_{n}$$
    Hence $$B+C=A$$

  • Question 4
    1 / -0
    The middle term in the expansion of$$\displaystyle (1+x)^{2n}$$is
    Solution
    The middle term in the above binomial expansion will be $$(n+1)^{th}$$ term.
    Therefore coefficient will be
    $$\:^{2n}C_{n}$$
    $$=\dfrac{2n!}{(n!)(n!)}$$
    $$=\dfrac{2^{n}x^{n}(1.3.5...(2n-1)}{n!}$$
  • Question 5
    1 / -0
    If the coeffecient of the middle term in the expansion of $${ (1+x) }^{ 2n+2 }$$ is $$\alpha $$ and coeffecient of middle terms in the expansion of $${ (1+x) }^{ 2n+1 }$$ are $$\beta $$ and $$\gamma $$, then relate $$\alpha, \beta$$ and $$ \gamma $$
    Solution
    $$(1+x)^{2n+2}$$.
    The middle term will be $$(\frac{N}{2}+1)$$ th term.
    $$=\frac{2n+2}{2}+1$$ th term
    $$=(n+2)^{th}$$ term
    Hence coefficient of the middle term will be
    $$\:^{2n+2}C_{n+1}$$
    $$=\alpha$$.
    For
    $$(1+x)^{2n+1}$$.
    The middle terms will be $$(\frac{N+1}{2}+1)$$ and  $$(\frac{N+1}{2})$$ terms
    $$=\frac{2n+2}{2}+1$$ th term and $$\frac{2n+2}{2}^{th}$$ term.
    $$=(n+2)^{th}$$ term and $$(n+1)^{th}$$ term.
    Hence coefficient of the middle terms will be
    $$\:^{2n+1}C_{n+1}=\beta$$ and $$\:^{2n+1}C_{n}=\gamma$$
    By the properties of binomial coefficients.
    $$\:^{2n+1}C_{n+1}+\:^{2n+1}C_{n}$$
    $$=\:^{2n+2}C_{n+1}$$
    Hence $$\beta+\gamma=\alpha$$
  • Question 6
    1 / -0
    The middle term in the expansion of $$\displaystyle \left ( x+\frac{1}{x} \right )^{10}$$,is
    Solution
    The middle term would be the 6th term.
    Hence
    $$T_{5+1}=\:^{10}C_{5}.$$
  • Question 7
    1 / -0
    The middle term in the expansion of $${ (1+x) }^{ 2n }$$ is
    Solution
    The middle term will be

    $$(\dfrac{N}{2}+1)th$$ term.

    Hence the middle term here will be

    $$(\dfrac{2n}{2}+1)th$$ term.

    $$=(n+1)th$$ term.

    Hence $$r=n$$.

    Therefore the coefficient will be

    $$\:^{2n}C_{n}$$

    $$=\dfrac{2n!}{{n!}{n!}}$$

    $$=\dfrac{2^nx^n(1.3.5...(2n-1))(n!)}{n!n!}$$

    $$=\dfrac{2^nx^n(1.3.5...(2n-1)}{n!}$$

    Hence, option A is correct.
  • Question 8
    1 / -0
    In the second term in the expansion $$\displaystyle { \left( \sqrt [ 13 ]{ a } +\frac { a }{ \sqrt { { a }^{ -1 } }  }  \right)  }^{ n }$$ is $$\displaystyle 14{ a }^{ \frac { 5 }{ 2 }  }$$ , then the value of $$\displaystyle \frac { _{  }^{ n }{ { C }_{ 3 }^{  } } }{ ^{ n }{ { C }_{ 2 }^{  } } } $$ is
    Solution
    Given: $${ T }_{ 2 }=14{ a }^{\tfrac 52 }$$

    $$\displaystyle \Rightarrow { _{  }^{ n }{ C } }_{ 1 }^{  }{ \left( { a }^{\tfrac 1{13} } \right)  }^{ n-1 }.{ \left( \dfrac { a }{ { a }^{ -\tfrac 12 } }  \right)  }^{ 1 }=14{ a }^{\tfrac 52 }$$

    $$\displaystyle \Rightarrow n.{ a }^{ \dfrac { n-1 }{ 13 }  }.{ a }^{ \dfrac { 3 }{ 2 }  }=14{ a }^{ \dfrac { 5 }{ 2 }  }$$

    $$\displaystyle \Rightarrow n.{ a }^{ \dfrac { n-1 }{ 13 }  }=14a\Rightarrow n.{ a }^{ \dfrac { n-14 }{ 13 }  }=14\Rightarrow n=14$$

    $$\displaystyle \therefore \dfrac { { _{  }^{ n }{ C } }_{ 3 }^{  } }{ { _{  }^{ n }{ C } }_{ 2 }^{  } } =\dfrac { { _{  }^{ 14 }{ C } }_{ 3 }^{  } }{ { _{  }^{ 14 }{ C } }_{ 2 }^{  } } =4$$
  • Question 9
    1 / -0
    The coeffecients of the middle term in the binomial expansion in powers of $$x$$ of $${ (1+\alpha x) }^{ 4 }$$ and $${ (1+\alpha x) }^{ 6 }$$ is the same if $$\alpha $$ equals
    Solution
    The middle terms of the above given binomial expressions will be
    $$\:^{4}C_{2}(\alpha)^{2}x^2$$ and $$\:^{6}C_{3}(\alpha)^{3}x^3$$
    Since the coefficients are equal,
    $$\:^{4}C_{2}(\alpha)^{2}=\:^{6}C_{3}(\alpha)^{3}$$
    $$6(\alpha)^{2}=20(\alpha)^{3}$$
    $$\dfrac{3}{10}=\alpha$$
  • Question 10
    1 / -0
    The coefficient of 1/x in the expansion of $$(1 + x)^n (1 + 1/x)^n$$ is
    Solution
    $$(1+x)^{n}(1+\dfrac{1}{x})^{n}$$
    $$=\dfrac{(1+x)^{2n}}{x^n}$$
    $$=\dfrac{1}{x^n}[(1+x)^{2n}]$$
    $$T_{r+1}=\:^{2n}C_{r}x^{r-n}$$
    Now for $$\dfrac{1}{x}$$
    $$r-n=-1$$
    $$r=n-1$$
    Substituting, we get
    $$T_{n}=\:^{2n}C_{n-1}x^{-1}$$
    Coefficient implies
    $$\:^{2n}C_{n-1}$$
    $$=\dfrac{(2n)!}{(n+1)!(n-1)!}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now