Self Studies

Binomial Theorem Test - 20

Result Self Studies

Binomial Theorem Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $${ C }_{ 0 },{ C }_{ 1 },{ C }_{ 2 },...,{ C }_{ n }$$ are the coefficients of the expansion of $${ \left( 1+x \right)  }^{ n }$$, then the value of $$\displaystyle \sum _{ 0 }^{ n }{ \frac { { C }_{ k } }{ k+1 }  } $$ is
    Solution
    Here $$\displaystyle { t }_{ r+1 }=\frac { ^{ n }{ { C }_{ r } } }{ r+1 } =\frac { 1 }{ r+1 } .^{ n }{ { C }_{ r } }=\frac { 1 }{ n+1 } .^{ n+1 }{ { C }_{ r+1 } }$$
    Putting $$r=0,1,2,,...n$$ and adding we get, 
    $$\displaystyle \sum _{ 0 }^{ n }{ \frac { ^{ n }{ { C }_{ k } } }{ k+1 }  } =\frac { 1 }{ n+1 } \left\{ ^{ n+1 }{ { C }_{ 1 } }+^{ n+1 }{ { C }_{ 2 } }+^{ n+1 }{ { C }_{ 3 } }+...+^{ n+1 }{ { C }_{ n+1 } } \right\} $$
    $$\displaystyle =\frac { 1 }{ n+1 } \left\{ { 2 }^{ n+1 }-^{ n+1 }{ { C }_{ 0 } } \right\} =\frac { { 2 }^{ n+1 }-1 }{ n+1 } $$
  • Question 2
    1 / -0
    If $$n$$ is an integer between $$0$$ and $$21$$, then the  minimum value of $$n!(21 - n)!$$ is attained for $$n=$$
    Solution
    Let us consider $$(1+x)^{21}$$
    Hence $$T_{r+1}=\:^{21}C_{r}x^{r}$$
    We know that both the middle terms will have the highest value of binomial coefficient.
    The middle terms in thew above binomial expansion are $$11^{th}$$ and $$12^{th}$$ terms.
    $$T_{10+1}=\:^{21}C_{10}x^{10}=\dfrac{21!}{10!(11)!}x^{10}$$

    $$T_{11+1}=\:^{21}C_{11}x^{11}=\dfrac{21!}{11!(10)!}x^{11}$$

    Hence $$n!(21-n)!$$ is least for $$n=0, n=21$$ followed by $$n=11$$ and $$n=10$$
  • Question 3
    1 / -0
    If the coefficient of $$x^7$$ in $$\left[ax + \left(\displaystyle\frac{1}{bx}\right)\right]^{11} is\ 55 a^{11}$$, then $$a$$ and $$b$$ satisfy the relation   
    Solution
    General term of $$\left[ax + \left(\displaystyle\frac{1}{bx}\right)\right]^{11}$$ is,
    $$\displaystyle\quad T_{r+1} =  ^{11}C_r (ax)^r\cdot \left(\frac{1}{bx} \right)^{11-r}  =  ^{11}C_ra^rb^{r-11}x^{2r-11}$$
    Let  $$T_{r+1}$$ posses $$x^7\Rightarrow 2r-11=7=> r=9$$
    Hence coefficient of $$x^7$$ is $$=^{11}C_9a^9b^{-2}=55a^9b^{-2} = 55a^{11}$$ (given)
    $$\therefore a^2b^2=1\Rightarrow ab = \pm 1$$
  • Question 4
    1 / -0
    If $${ \left( 1+x \right)  }^{ n }={ C }_{ 0 }+{ C }_{ 1 }x+{ C }_{ 2 }{ x }^{ 2 }+...+{ C }_{ n }{ x }^{ n }$$, then $$\displaystyle 2{ C }_{ 0 }+{ 2 }^{ 2 }.\frac { { C }_{ 1 } }{ 2 } +{ 2 }^{ 3 }.\frac { { C }_{ 2 } }{ 3 } +...+{ 2 }^{ n+1 }.\frac { { C }_{ n } }{ n+1 } =$$
    Solution
    We have,
    $$\displaystyle { t }_{ r+1 }={ 2 }^{ r+1 }\frac { ^{ n }{ { C }_{ r } } }{ r+1 } ={ 2 }^{ r+1 }\frac { 1 }{ n+1 } .^{ n+1 }{ { C }_{ r+1 } }$$
    Putting $$r=0,1,2,...,n$$ and adding, we get the required sum
    $$\displaystyle =\frac { 1 }{ n+1 } \left\{ 2.^{ n+1 }{ { C }_{ 1 } }+{ 2 }^{ 2 }.^{ n+1 }{ { C }_{ 2 } }+...+{ 2 }^{ n+1 }.^{ n+1 }{ { C }_{ r+1 } } \right\} $$
    $$\displaystyle =\frac { 1 }{ n+1 } \left\{ { \left( 1+2 \right)  }^{ n+1 }-^{ n+1 }{ { C }_{ 0 } } \right\} =\frac { { 3 }^{ n+1 }-1 }{ n+1 } $$.
  • Question 5
    1 / -0
    The value of $$\displaystyle \frac { { _{  }^{ n }{ C } }_{ 1 }^{  } }{ 2 } +\frac { { _{  }^{ n }{ C } }_{ 3 }^{  } }{ 4 } +\frac { { _{  }^{ n }{ C } }_{ 5 }^{  } }{ 6 } +...$$ is
    Solution
    The $$rth$$ term in the given expression is
    $$\displaystyle { T }_{ r }=\frac { { _{  }^{ n }{ C } }_{ 2r-1 }^{  } }{ 2r } $$

    Since $$\displaystyle \frac { 1 }{ r+1 } .{ _{  }^{ n }{ C } }_{ r }=\frac { 1 }{ n+1 } .{ _{  }^{ n+1 }{ C } }_{ r+1 }$$

    $$\displaystyle \therefore \quad { T }_{ r }=\frac { { _{  }^{ n }{ C } }_{ 2r-1 } }{ 2r } =\frac { 1 }{ n+1 } .{ _{  }^{ n+1 }{ C } }_{ 2r }$$

    $$\displaystyle \therefore \quad \frac { { _{  }^{ n }{ C } }_{ 1 } }{ 2 } +\frac { { _{  }^{ n }{ C } }_{ 3 } }{ 4 } +\frac { { _{  }^{ n }{ C } }_{ 5 } }{ 6 } +....=\frac { 1 }{ n+1 } \left[ { _{  }^{ n+1 }{ C } }_{ 2 }+{ _{  }^{ n+1 }{ C } }_{ 4 }+... \right] $$

    $$\displaystyle =\frac { 1 }{ n+1 } \left[ { 2 }^{ n+1-1 }-{ _{  }^{ n }{ C } }_{ 0 } \right] =\frac { { 2 }^{ n }-1 }{ n+1 } $$
  • Question 6
    1 / -0
    Find the sum 1 $$\times$$ 2 $$\times$$ C$$_1$$ + 2 $$\times$$ 3 C$$_2$$ + n (n+1)C$$_{n'}$$ where C$$_r$$ = $$^n$$C$$_r$$. 
    Solution
    Let $$n=1$$
    Hence $$(n)(n+1)C_{n}$$
    $$=(1)(2)C_{1}$$
    $$=2$$.
    This is satisfied by Option A and Option B
    Let $$n=2$$
    Hence $$2\:^{2}C_{1}+(2)(3)\:^{2}C_{2}$$
    $$=4+6$$
    $$=10$$
    This is satisfied only by Option B
    Hence answer is Option B.
  • Question 7
    1 / -0
    If$$(1+2x+x^2)^n = \displaystyle \sum_{r=0}^{2n} a_r x^r$$, then $$a_r=$$
    Solution
    $$(x^2+2x+1)^{n}$$
    $$=((1+x)^{2})^{n}$$
    $$=(1+x)^{2n}$$
    Hence
    $$T_{r+1}=\:^{2n}C_{r}x^{r}$$
    Hence $$a_{r}=\:^{2n}C_{r}$$
  • Question 8
    1 / -0
    Find the ratio of the coefficient of $${ x }^{ 10 }$$ in $${ \left( 1-{ x }^{ 2 } \right)  }^{ 10 }$$ and the term independent of $$x$$ in the expansion of $${ \left( x-\cfrac { 2 }{ x }  \right)  }^{ 10 }$$
    Solution
    The general term $$(r+1)^{th}$$ in the expansion of $$(a+b)^{n}$$ is $${T}_{r+1}={}^{n}{C}_{r}a^{n-r}b^{r}$$
    In expansion of $$\left(1-x^{2}\right)^{10}$$
    $${T}_{r+1}=\quad^{10}{C}_{r}(1)^{10-r}(-x^{2})^{r}$$
    $$\Rightarrow {T}_{r+1}=\quad^{10}{C}_{r}(-1)^{r}x^{2r}$$
    $$\therefore x^{2r}= x^{10}$$
    $$\Rightarrow 2r=10$$
    $$\Rightarrow r=5$$
    $$coeff({T}_{5+1})={}^{10}{C}_{5}(-1)^{5}= {}^{-10}{C}_{5}$$  (equation $$1$$)
    In expansion of $$\left(x-\cfrac{2}{x} \right)^{10}$$
    $${T}_{r+1}= \quad^{10}{C}_{r}(x)^{10-r}(\cfrac{-2}{x})^{r}$$
    $$\Rightarrow {T}_{r+1}= \quad^{10}{C}_{r} x^{10-2r}(-2)^{r}$$
    $$\therefore x^{10-2r}=x^{0}$$
    $$\Rightarrow r=5$$
    $$coeff({T}_{5+1}) = {}^{10}{C}_{5}(-2)^{5}= {}^{-10}{C}_{5}(32)$$  (equation $$2$$)
    By dividing equation $$(1)$$ and $$(2)$$ we get,
    $$=\cfrac{^{-10}{C}_{5}}{^{-10}{C}_{5}32}= \cfrac{1}{32}$$
  • Question 9
    1 / -0
    The sum of the coefficients in the expansion of $${ \left( 1+5x-7{ x }^{ 3 } \right)  }^{ 3165 }$$ is
    Solution
    To get sum of coefficient put $$x=1$$
    Hence sum of the coefficients in the expansion of $${ \left( 1+5x-7{ x }^{ 3 } \right)  }^{ 3165 }$$ is,
    $$\quad =(1+5-7)^{3165}=(-1)\cdot (-1)^{3164}=-1$$
  • Question 10
    1 / -0
    Which term in the expansion of $${ \left[ \sqrt [ 3 ]{ \left( \frac { a }{ \sqrt { b }  }  \right)  } +\sqrt { \left( \frac { b }{ \sqrt [ 3 ]{ a }  }  \right)  }  \right]  }^{ 21 }$$ contains $$a$$ and $$b$$ to one and same power.
    Solution
    For the above question
    $$T_{r+1}=\:^{21}C_{r}a^{7-\frac{r}{3}+\frac{r}{6}}b^{\frac{7}{2}-\frac{r}{6}+\frac{r}{2}}$$
    $$=\:^{21}C_{r}a^{7-\frac{r}{6}}b^{\frac{7}{2}+\frac{r}{3}}$$
    For the powers of a and b to be same
    $$7-\frac{r}{6}=\frac{7}{2}+\frac{r}{3}$$
    $$\frac{7}{2}=\frac{3r}{6}$$
    $$r=7$$
    This implies that the term number is 8th.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now