Self Studies

Binomial Theorem Test - 21

Result Self Studies

Binomial Theorem Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the coefficient of $$\cfrac { 1 }{ { y }^{ 2 } } $$ in $${ \left( y+\cfrac { { c }}{ { y }^{ 2 } }  \right)  }^{ 10 }$$.
    Solution
    $$(y+\frac{c}{y^2})^{10}$$
    $$T_{r+1}=\:^{10}C_{r}y^{10-3r}c^r$$
    Hence for $$y^{-2}$$
    $$10-3r=-2$$
    $$12=3r$$
    $$r=4$$
    Coefficient will be
    $$\:^{10}C_{4}c^4$$
    $$=210c^4$$
  • Question 2
    1 / -0
    If $${ x }^{ 4r }$$ occurs in the expansion of $${ \left( x+\cfrac { 1 }{ { x }^{ 2 } }  \right)  }^{ 4n }$$ , then its coefficient is 
    Solution
    The $$(k+1)^{th}$$ term of the given expression is
        $$T_{k+1} = {^{4n}\textrm{C}_{k}} x^{(4n-k)}( \displaystyle \frac{1}{x^{2}})^{k}$$
     
        We know the coefficient of $$x$$ is $$4r$$, so, $$4n - k- 2k = 4r$$
                                                                      $$k = \displaystyle \frac{4(n-r)}{3}$$
        
         The $$(k+1)^{th}$$ term will be,
                         $${ \displaystyle ^{4n}\textrm{C}_{\dfrac{4(n-r)}{3}}} (x)^ { \left(4n-  \frac{4(n-r)}{3} \right)} ( \displaystyle \frac{1}{x^{2}})^{  \frac{4(n-r)}{3}}$$
             
        The coeffecient will be $${ \displaystyle ^{4n}\textrm{C}_{\frac{4(n-r)}{3}}}$$
           That is,
           = $$  \displaystyle \frac{4n!}{(4n-\dfrac{4n}{3}+ \displaystyle \frac{4r}{3})!(\frac{4(n-r)}{3})!}$$
                                           
           = $$  \displaystyle \frac{4n!}{( \displaystyle \frac{4(2n+r)}{3})!( \displaystyle \frac{4(n-r)}{3})!}$$
  • Question 3
    1 / -0
    Determine the value of $$x$$ in the expression of $${ ( 2+x) }^{ 5 }$$, if the second term in the expansion is $$240$$
    Solution
    The general term of $$(a+x)^n$$ is $$^nC_r a^{(n-r)}x^r$$

    Here, $$n=5$$ 
    we will get second term if we put $$r=1$$ 

    The second term will be $$^5C_1(2^{(5-1)})x$$
    $$=5(2^{4})x$$

    $$5(2^{4})x=240$$    ...... given

    Therefore
    $$5(16)x=240$$
    $$80(x)=240$$
    $$x=3$$
  • Question 4
    1 / -0
    Find the $$(n+1)^{th}$$ term from the end in the expansion of $${ \left( x-\cfrac { 1 }{ x }  \right)  }^{ 2n }$$
    Solution
    There are total $$2n+1$$ terms in the given expansion.
    Hence $$(n+1)^{th}$$ term, from the end is the $$(n+1)^{th}$$ term form beginning the beginning also since, it is the middle term.
    $$T_{n+1}$$$$=\:^{2n}C_{n}x^{n}(-\dfrac{1}{x^{n}})^{n}$$

    $$=(-1)^{n}\:^{2n}C_{n}$$

  • Question 5
    1 / -0
    Find the middle term in the expansion of $${ \left( \cfrac { 2x }{ 3 } +\cfrac { 3 }{ 2x }  \right)  }^{ 10 }$$.
    Solution
    The middle term will be the 6th term. It will also be the only term independent of $$x$$.
    Hence the coefficient will be
    $$T_{5+1}=\:^{10}C_{5}$$
    $$=\displaystyle\frac{10!}{5!(5!)}$$
    $$=252$$
  • Question 6
    1 / -0
    If $${ \left( 1+2x+x^{ 2 } \right)  }^{ n }=\sum _{ r=0 }^{ 2n }{ { a }_{ r }{ x }^{ r } } $$, then $${ a }_{ r }=$$
    Solution
    We have $$\displaystyle { \left( 1+2x+{ x }^{ 2 } \right)  }^{ n }=\sum _{ r=0 }^{ 2n }{ { a }_{ r }{ x }^{ r } } $$
    $$\displaystyle \Rightarrow { \left( 1+x \right)  }^{ 2n }=\sum _{ r=0 }^{ 2n }{ { a }_{ r }{ x }^{ r } } $$
    $$\displaystyle \Rightarrow \sum _{ r=0 }^{ 2n }{ ^{ 2n }{ { C }_{ r } }{ x }^{ r } } =\sum _{ r=0 }^{ 2n }{ { a }_{ r }{ x }^{ r } } \Rightarrow { a }_{ r }=^{ 2n }{ { C }_{ r } }$$
  • Question 7
    1 / -0
    The middle term in the expansion of $${ \left( 1+x \right)  }^{ 2n }$$ is , $$n$$ being a positive integer is
    Solution
    The number of terms in the expansion of $${ \left( 1+x \right)  }^{ 2n } $$ is $$(2n+1)$$ (odd), its middle term is $$\dfrac{2n+1+1}2=(n+1)^{th}$$ term.$$\therefore$$ Required term $$={ T }_{ n+1 }={ _{  }^{ 2n }{ C } }_{ n }{ x }^{ n }\\                             =\cfrac { 2n! }{ n!n! } { x }^{ n }=\cfrac { \left\{ 1.2.3.4.5.6...(2n-1)2n \right\}  }{ n!n! } { x }^{ n }\\                             =\cfrac { \left\{ 1.3.5....(2n-1) \right\} \left\{ 2.4.6.....2 \right\} n }{ n!n! } { x }^{ n }\\                             =\cfrac { \left\{ 1.3.5....(2n-1) \right\} { 2 }^{ n }(1.2.3....n) }{ n!n! } { x }^{ n }\\                             =\cfrac { \left\{ 1.3.5....(2n-1) \right\} { 2 }^{ n } }{ n! } { x }^{ n }\\                 $$
  • Question 8
    1 / -0
    If $$n>2$$, then find the value of $${ C }_{ 1 }{ \left( a-1 \right)  }^{ 2 }-{ C }_{ 2 }{ \left( a-2 \right)  }^{ 2 }+{ C }_{ 3 }{ \left( a-3 \right)  }^{ 2 }-.....+{ \left( -1 \right)  }^{ n-1 }{ C }_{ n }{ \left( a-n \right)  }^{ 2 }$$ where $${ C }_{ r }$$ stands for $$\quad { _{  }^{ n }{ C } }_{ r }$$
    Solution
    Let $$n=3$$
    Hence the above expression reduces to
    $$\:^{3}C_{1}(a-1)^{2}-\:^{3}C_{2}(a-2)^{2}+\:^{3}C_{3}(a-3)^{3}$$
    $$=3(a-1)^{2}-3(a-2)^{2}+(a-3)^{3}$$
    $$=3a^2-6a+3-(3a^2-12a+12)+(a^2-6a+9)$$
    $$=a^2$$
    Hence answer is Option D
  • Question 9
    1 / -0
    find the 7th term in the expansion of $${ \left( 4x-\frac { 1 }{ 2\sqrt { x }  }  \right)  }^{ 13 }$$
    Solution
    The 7th term of the given binomial expansion will be,
    $$=$$ $$ \displaystyle _{6}^{13}\textrm{C} \; (4x)^{7} \;(-\frac{1}{2x^{\frac{1}{2}}})^{6}$$

    $$=$$ $$ \displaystyle\frac{13! \times 2^{14} \times x^{7}}{7! . 6! \times 2^{6}.x^{3}}$$

    $$=$$ $$ \displaystyle\frac{13! \times 2^{14}}{7! \times 6! \times 2^{6}}x^{4}$$

    $$=439296x^{4}$$

  • Question 10
    1 / -0
    The $$8^{th}$$ term of $$\displaystyle { \left( 3x+\frac { 2 }{ 3{ x }^{ 2 } }  \right)  }^{ 12 }$$, when expanded ina scending power of $$x$$, is
    Solution
    When $$\displaystyle { \left( 3x+\frac { 2 }{ 3{ x }^{ 2 } }  \right)  }^{ 12 }$$ is expanded, the power of $$x$$ goes on decreasing as the terms proceed.
    hence, it is expanded in descending power of $$x$$.
    So $$\displaystyle { \left( \frac { 2 }{ 3{ x }^{ 2 } } +3x \right)  }^{ 12 }$$, when expanded will be ascending power of $$x$$.
    Now $${ t }_{ 8 }$$ in $$\displaystyle { \left( \frac { 2 }{ 3{ x }^{ 2 } } +3x \right)  }^{ 12 }$$ $$\displaystyle =_{  }^{ 12 }{ { C }_{ 7 }^{  } }{ \left( \frac { 2 }{ 3{ x }^{ 2 } }  \right)  }^{ 12-7 }.{ \left( 3x \right)  }^{ 7 }$$
    $$\displaystyle =\frac { 12! }{ 7!5! } .{ \left( \frac { 2 }{ 3{ x }^{ 2 } }  \right)  }^{ 5 }.{ \left( 3x \right)  }^{ 7 }=\frac { 12\times 11\times 10\times 9\times 8 }{ 5\times 4\times 3\times 2 } .\frac { { 2 }^{ 5 }.{ 3 }^{ 2 } }{ { x }^{ 3 } } $$ $$\displaystyle =\frac { 228096 }{ { x }^{ 3 } } $$ 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now