Self Studies

Binomial Theorem Test - 22

Result Self Studies

Binomial Theorem Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The $$4th$$ term from the end in the expansion of $${ \left( \cfrac { { x }^{ 3 } }{ 2 } -\cfrac { 2 }{ { x }^{ 2 } }  \right)  }^{ 7 }$$ is

    Solution
    For the above question
    $$T_{r+1}=\:^{7}C_{r}x^{21-5r}2^{2r-7}$$
    For the fourth term, from the end $$r=4$$
    $$T_{5+1}=\:^{7}C_{4}x^{1}2^{}$$
    $$=(35)(2)x$$
    $$=70x$$

  • Question 2
    1 / -0
    The middle term in the expansion of $${ \left( \cfrac { a }{ x } +bx \right)  }^{ 12 }$$ is
    Solution
    The middle term will be the 7th term.
    Hence
    $$T_{6+1}=\:^{12}C_{6}(\frac{a}{x})^{6}(bx)^{6}=924a^{6}b^{6}$$
  • Question 3
    1 / -0
    Find the middle term in the expansion of $${ \left( 3x-\cfrac { { x }^{ 3 } }{ 6 }  \right)  }^{ 9 }$$.

    Solution

  • Question 4
    1 / -0
    There will be no term containing $${ x }^{ 2r }$$ in the expansion of $${ \left( x+{ x }^{ -2 } \right)  }^{ n-3 }$$ if $$(n-2r)$$ is positive but not a multiple of 
    Solution
    $$(x+\dfrac{1}{x^2})^{n-3}$$
    $$T_{r+1}=\:^{n-3}C_{r}x^{n-3-3r}$$
    For $$x^{2r}$$
    $$n-3-3r=2r$$
    $$n-3=5r$$
    or
    $$n-2r=3+3r$$
    $$=3(1+r)$$
    $$=3k$$
    Hence $$n-2r$$ has to be a multiple of 3 for the existence of $$x^{2r}$$
  • Question 5
    1 / -0
    If $${ \left( 8+3\sqrt { 7 }  \right)  }^{ n }=\alpha +\beta $$  where $$n$$ and $$\alpha$$ are positive integers and $$\beta$$ is a positive proper fraction,then
    Solution
    Given, $$\alpha+\beta=(8+3\sqrt{7})^{n}$$

    And 

    $$1-\beta$$ $$=\dfrac{1}{\alpha+\beta}$$ $$=\dfrac{1}{(8+3\sqrt{7})^{n}}$$

    Rationalizing, we get 

    $$1-\beta$$ $$=\dfrac{1}{(8+3\sqrt{7})^{n}}\dfrac{(8-3\sqrt{7})^{n}}{(8-3\sqrt{7})^{n}}$$

    $$=\dfrac{(8-3\sqrt{7})^{n}}{(64-63)^n}$$    ........    $$a^2-b^2=(a-b)(a+b)$$

    $$=(8-3\sqrt{7})^{n}$$

    Now 
    $$(1-\beta)(\alpha+\beta)$$

    $$=(8-3\sqrt{7})^{n}(8+3\sqrt{7})^{n}$$

    $$=(64-63)^{n}$$  ........    $$a^2-b^2=(a-b)(a+b)$$

    $$=1$$
    Option A is correct
  • Question 6
    1 / -0
    If $${ \left( 1+x \right)  }^{ n }={ C }_{ 0 }+{ C }_{ 1 }x+{ C }_{ 2 }{ x }^{ 2 }+...+{ C }_{ n }{ x }^{ n }$$, then $$\displaystyle \sum _{ 0\le i\le  }^{  }{ \sum _{ j\le n }^{  }{ { \left( { C }_{ i }+{ C }_{ j } \right)  }^{ 2 } } = } $$
    Solution
    $$\sum _{ 0\le i\le  }^{  }{ \sum _{ j\le n }^{  }{ { \left( { C }_{ i }+{ C }_{ j } \right)  }^{ 2 } }  } \quad i=0,1,2,...,\left( n-1 \right) ;j=1,2,3,...,n$$ and $$i<j$$
    $$=n\left( { C }_{ 0 }^{ 2 }+{ C }_{ 1 }^{ 2 }+...+{ C }_{ n }^{ 2 } \right) +2\sum { \sum { { C }_{ i }{ C }_{ j } }  } 0\le i\le j\le n\\ =n.^{ 2n }{ { C }_{ n } }+\left[ { \left( { C }_{ 0 }+{ C }_{ 1 }+...+{ C }_{ n } \right)  }^{ 2 }-\left( { C }_{ 0 }^{ 2 }+{ C }_{ 1 }^{ 2 }+...+{ C }_{ n } \right)  \right] \\ =n.^{ 2n }{ { C }_{ n } }+{ { \left( { 2 }^{ n } \right)  } }^{ 2 }-^{ 2n }{ { C }_{ n } }=\left( n-1 \right) .^{ 2n }{ { C }_{ n } }+{ 2 }^{ 2n }$$
  • Question 7
    1 / -0
    If the second term in the expansion $${ \left[ a^{\dfrac {1}{13}} +\dfrac { a }{ \sqrt { { a }^{ -1 } }  }  \right]  }^{ n }$$ is $$14\ { a }^{ 5/2 }$$, then the value of $$\dfrac {^{n}C_{3}}{^{n}C_{2}}$$ is
    Solution
    The first term will have a coefficient of $$\:^{n}C_{1}=n$$
    Now, this coefficient has to be equal to $$14.$$
    Therefore $$n=14$$
    Now
    $$\dfrac{\:^{14}C_{3}}{\:^{14}C_{2}}=\dfrac{14!(12!)(2!)}{11!(3!)(14!)}=\dfrac{12}{3}=4$$
  • Question 8
    1 / -0
    If the number of terms in $${ \left( x+1+\cfrac { 1 }{ x }  \right)  }^{ n }\quad (n\in { I }^{ + })$$ is 401, then $$n$$ is greater than
    Solution
    If we substitute 2 in place of 1 in the above expression, we get
    $$(x+2+\frac{1}{x})^{n}$$
    $$((\sqrt{x}+\frac{1}{\sqrt{x}}))^{2n}$$
    Since the total number of terms is 401
    $$2n+1=401$$
    $$2n=400$$
    $$n=200$$
    However the actual question is
    $$(x+1+\frac{1}{x})^{n}$$
    Hence n is greater than 199.
  • Question 9
    1 / -0
    If $$\displaystyle{ a }_{ n }=\sum _{ r=0 }^{ n }{ \cfrac { 1 }{ { _{  }^{ n }{ C } }_{ r } }  } $$then $$\displaystyle\sum _{ r=0 }^{ n }{ \cfrac { r }{ { _{  }^{ n }{ C } }_{ r } }  }$$ equals
    Solution
    We have $$\displaystyle { a }_{ n }=\sum _{ r=0 }^{ n }{ \frac { 1 }{ ^{ n }{ C }_{ r } }  } =\sum _{ r=0 }^{ \frac { n }{ 2+1 }  }{ \frac { 1 }{ ^{ n }{ C }_{ r } } +\frac { 1 }{ ^{ n }{ { C }_{ n-r } } }  } $$
    $$\displaystyle \Rightarrow { a }_{ n }=\sum _{ r=0 }^{ \frac { n+1 }{ 2 }  }{ \frac { 2 }{ ^{ n }{ C_{ r } } } =2 } \sum _{ r=0 }^{ \frac { n+1 }{ 2 }  }{ \frac { 1 }{ ^{ n }{ C }_{ r } }  } $$   
    $$\displaystyle \therefore \sum _{ r=0 }^{ n }{ \frac { 1 }{ ^{ n }{ C }_{ r } }  } =\sum _{ r=0 }^{ \frac { n+1 }{ 2 }  }{ \frac { r+\left( n-r \right)  }{ ^{ n }{ { C }_{ r } } }  } $$
    $$\displaystyle \Rightarrow n\sum _{ r=0 }^{ n }{ \frac { 1 }{ ^{ n }{ C }_{ r } }  } =n\left( \frac { { a }_{ n } }{ 2 }  \right) =\frac { n }{ 2 } { a }_{ n }$$
  • Question 10
    1 / -0
    The total number of terms in the expansion of $${ \left( x+a \right)  }^{ 100 }+{ \left( x-a \right)  }^{ 100 }$$  after simplification is

    Solution
    In the above binomial expansion, the terms at the even places will get eliminated, and we would be left with twice the sum of the terms at odd places.
    Hence there will be
    $$\frac{n}{2}+1$$
    $$=\frac{100}{2}+1$$
    $$=51$$ terms
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now