Self Studies

Binomial Theorem Test - 23

Result Self Studies

Binomial Theorem Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$n$$ and $$k$$ be  positive integers such that $$\displaystyle n\ge \frac { k\left( k+1 \right)  }{ 2 } .$$ The number of solution $$\left( { x }_{ 1 },{ x }_{ 2 },..,{ x }_{ k } \right) \ge 1;{ x }_{ 2 }\ge 2,...,{ x }_{ k }\ge k$$ all integers satisfying $${ x }_{ 1 }+{ x }_{ 2 }+{ x }_{ 3 }+...+{ x }_{ k }=n$$ is
    Solution
    The number of solutions of $${ x }_{ 1 }+{ x }_{ 2 }+{ x }_{ 3 }+...{ x }_{ k }=n$$
    $$=$$ coefficients of $${ t }^{ n }$$ in $$\left( t+{ t }^{ 2 }+{ t }^{ 3 }+.. \right) \left( { t }^{ 2 }+{ t }^{ 3 }+.. \right) ...\left( { t }^{ k }+{ t }^{ k+1 }+.. \right) $$
    $$=$$ coefficient of $${ t }^{ n }$$ in $${ t }^{ 1+2+3+...k }{ \left( 1+t+{ t }^{ 2 }+{ t }^{ 3 }+.. \right)  }^{ k }$$
    But $$1+2+3+...k=k\displaystyle\frac { k+1 }{ 2 } =r$$
    and $$1+t+{ t }^{ 2 }+{ t }^{ 3 }+..=\displaystyle\frac { 1 }{ 1-t } $$
    Thus the required number of solutions 
    $$=$$ coefficients of $${ t }^{ n-r }$$ in $${ \left( 1-t \right)  }^{ -k }$$
    $$=$$ coefficients of $${ t }^{ n-r }$$ in$$1+_{  }^{ k }{ { C }_{ 1 }^{  }t+ }^{ k+1 }{ { C }_{ 2 }^{  }{ t }^{ 2 }+.... }$$
    $$\Rightarrow \ \ _{  }^{ k+n-r-1 }{ { C }_{ n-r }^{  } }=^{ k+n-r-1 }{ { C }_{ k-1 }^{  } }=^{ m }{ { C }_{ k-1 }^{  } }$$
  • Question 2
    1 / -0
    The number of irrational terms in the expansion of $${ \left( { 2 }^{ \dfrac 15 }+{ 3 }^{ \dfrac {1}{10} } \right)  }^{ 55 }$$ is

    Solution
    For the above question
    $$T_{r+1}=\:^{55}C_{r}2^{11-\dfrac{r}{5}}3^{\dfrac{r}{10}}$$
    Hence we will have rational terms at $$r=0,10,20,30,40,50$$ respectively.
    Hence there will be $$6$$ rational terms.
    The total number of terms will be
    $$55+1$$
    $$=56$$ terms.
    Hence the number of irrational terms will be
    $$56-6$$
    $$=50$$ terms.
  • Question 3
    1 / -0
    Find the middle term in the expansion of $${ \left( \cfrac { x }{ a } -\cfrac { a }{ x }  \right)  }^{ 21 }$$
    Solution
    There are 22 terms in the expansion of $$(\displaystyle \frac{x}{a}-\displaystyle \frac{a}{x})^{21}$$.
    So, the middle terms are $$T_{11}$$ and $$T_{12}$$
    $$T_{11}=^{21}\textrm{C}_{10}(\displaystyle \frac{x}{a})^{11}(\displaystyle \frac{-a}{x})^{10}=^{21}\textrm{C}_{10}(\displaystyle \frac{x}{a})$$
    and
    $$T_{12}=^{21}\textrm{C}_{11}(\displaystyle \frac{x}{a})^{10}(\displaystyle \frac{-a}{x})^{11}=-^{21}\textrm{C}_{11}(\displaystyle \frac{a}{x})=-^{21}\textrm{C}_{10}(\displaystyle \frac{a}{x})$$
  • Question 4
    1 / -0
    In the expansion of the expression $${ \left( x+a \right)  }^{ 15 }$$, if the eleventh term in the geometric mean of the eighth and twelfth terms, which term in the expression is the greatest?
    Solution
    From the given condition, one get
    $$\displaystyle { \left( _{  }^{ 15 }{ { C }_{ 10 }{ x }^{ 2 }{ a }^{ 10 } } \right)  }^{ 2 }=\left( _{  }^{ 15 }{ { C }_{ 7 }{ x }^{ 8 }{ a }^{ 7 } } \right) \left( _{  }^{ 15 }{ { C }_{ 11 }{ x }^{ 4 }{ a }^{ 11 } } \right) \Rightarrow \frac { a }{ x } =\sqrt { \frac { 75 }{ 77 }  } $$
    Now $$\displaystyle \left( x+a \right) ^{ 15 }={ x }^{ 15 }{ \left( 1+\frac { a }{ x }  \right)  }^{ 15 }$$ 
    consider the expansion of $$\displaystyle { \left( 1+\frac { a }{ x }  \right)  }^{ 15 }$$
    $$\displaystyle { T }_{ r }={ T }_{ r+1 }\Rightarrow \frac { r }{ \left( n-r+1 \right) \left( \frac { a }{ x }  \right)  } =1$$
    $$\displaystyle \Rightarrow r=16\sqrt { \frac { 75 }{ 77 }  } -r\sqrt { \frac { 75 }{ 77 }  } \Rightarrow r=\frac { 16\sqrt { \frac { 75 }{ 77 }  }  }{ 1+\sqrt { \frac { 75 }{ 77 }  }  } =7$$
    If $$r=7\Rightarrow { T }_{ 7 }<{ T }_{ 8 }$$ and $$r=8\Rightarrow { T }_{ 8 }>{ T }_{ 9 }$$
    Hence $${ T }_{ 8 }$$ is the greater term
  • Question 5
    1 / -0
    Find the sum of the series $$\displaystyle\sum _{ r=0 }^{ n }{ { \left( -1 \right)  }^{ n } }  { _{  }^{ n }{ C } }_{ r }\left[ \cfrac { 1 }{ { 2 }^{ r } } +\cfrac { { 3 }^{ r } }{ { 2 }^{ 2r } } +\cfrac { { 7 }^{ r } }{ { 2 }^{ 3r } } +\cfrac { { 15 }^{ r } }{ { 2 }^{ 4r } } +...upto\: m\: terms \right] $$
    Solution
    $$\displaystyle \sum _{ r=0 }^{ n }{ { \left( -1 \right)  }^{ n } }. { _{  }^{ n }{ C } }_{ r }\left[ \cfrac { 1 }{ { 2 }^{ r } } +\cfrac { { 3 }^{ r } }{ { 2 }^{ 2r } } +\cfrac { { 7 }^{ r } }{ { 2 }^{ 3r } } +\cfrac { { 15 }^{ r } }{ { 2 }^{ 4r } } +... \right] $$ upto m terms
    $$\displaystyle=\sum _{ r=0 }^{ n }{ { \left( -1 \right)  }^{ n } } { _{  }^{ n }{ C } }_{ r }{ \left( \frac { 1 }{ 2 }  \right)  }^{ r }+\sum _{ r=0 }^{ n }{ { \left( -1 \right)  }^{ n } } { _{  }^{ n }{ C } }_{ r }{ \left( \frac { 3 }{ 4 }  \right)  }^{ r }+\sum _{ r=0 }^{ n }{ { \left( -1 \right)  }^{ n } } { _{  }^{ n }{ C } }_{ r }\left(  \right) { \left( \frac { 7 }{ 8 }  \right)  }^{ r }+...$$
    $$\displaystyle={ \left( 1-\frac { 1 }{ 2 }  \right)  }^{ n }+{ \left( 1-\frac { 3 }{ 4 }  \right)  }^{ n }+{ \left( 1-\frac { 7 }{ 8 }  \right)  }^{ n }+...\quad \quad \left[ \because \sum _{ r=0 }^{ n }{ { \left( -1 \right)  }^{ n } } { _{  }^{ n }{ C } }_{ r }{ x }^{ r }={ \left( 1-x \right)  }^{ r } \right] $$
    $$\displaystyle={ \left( \frac { 1 }{ 2 }  \right)  }^{ n }+{ \left( \frac { 1 }{ 4 }  \right)  }^{ n }+{ \left( \frac { 1 }{ 8 }  \right)  }^{ n }+...={ \left( \frac { 1 }{ 2 }  \right)  }^{ n }\left[ \frac { 1-{ \left( \frac { 1 }{ { 2 }^{ n } }  \right)  }^{ m } }{ 1-{ \left( \frac { 1 }{ 2 }  \right)  }^{ n } }  \right] $$
    $$\displaystyle=\frac { { 2 }^{ mn }-1 }{ { 2 }^{ mn }\left( { 2 }^{ n }-1 \right)  } $$
  • Question 6
    1 / -0
    Determine the value of $$x$$ in the expression $${ \left( x+{ x }^{ t } \right)  }^{ 5 }$$, if the third term in the expression is 10,00,000 where $$t=\log _{ 10 }{ x } $$.
    Solution
    $$T_{3}$$ $$=\:^{5}C_{2}x^{3+2t}$$
    $$=10^{6}$$
    $$x^{3+2t}=10^{5}$$
    $$\ln(x)(3+2t)=5\ln(10)$$
    $$\log_{10}(x)(3+2t)=5$$
    $$t(3+2t)=5$$
    $$2t^{2}+3t-5=0$$
    $$t=1$$ and $$t=\dfrac{-5}{2}$$
    Hence, $$x=10$$ and $$x=10^{\frac{-5}{2}}$$.
  • Question 7
    1 / -0
    If $$\cfrac { { _{  }^{ n }{ C } }_{ r }+4{ _{  }^{ n }{ C } }_{ r+1 }+6{ _{  }^{ n }{ C } }_{ r+2 }+4{ _{  }^{ n }{ C } }_{ r+3 }+{ _{  }^{ n }{ C } }_{ r+4 } }{ { _{  }^{ n }{ C } }_{ r }+3{ _{  }^{ n }{ C } }_{ r+1 }+3{ _{  }^{ n }{ C } }_{ r+2 }+{ _{  }^{ n }{ C } }_{ r+3 } } =\cfrac { n+k }{ r+k } $$. Find the value of k
    Solution
    $$\displaystyle\cfrac { { _{  }^{ n }{ C } }_{ r }+4{ _{  }^{ n }{ C } }_{ r+1 }+6{ _{  }^{ n }{ C } }_{ r+2 }+4{ _{  }^{ n }{ C } }_{ r+3 }+{ _{  }^{ n }{ C } }_{ r+4 } }{ { _{  }^{ n }{ C } }_{ r }+3{ _{  }^{ n }{ C } }_{ r+1 }+3{ _{  }^{ n }{ C } }_{ r+2 }+{ _{  }^{ n }{ C } }_{ r+3 } }$$
    $$\displaystyle=1+\cfrac { { _{  }^{ n }{ C } }_{ r+1 }+3{ _{  }^{ n }{ C } }_{ r+2 }+3{ _{  }^{ n }{ C } }_{ r+3 }+{ _{  }^{ n }{ C } }_{ r+4 } }{ { _{  }^{ n }{ C } }_{ r }+3{ _{  }^{ n }{ C } }_{ r+1 }+3{ _{  }^{ n }{ C } }_{ r+2 }+{ _{  }^{ n }{ C } }_{ r+3 } }$$
    using $${ _{  }^{ n }{ C } }_{ r }+{ _{  }^{ n }{ C } }_{ r-1 }={ _{  }^{ n+1 }{ C } }_{ r }$$
    $$\displaystyle=1+\cfrac { { _{  }^{ n+1 }{ C } }_{ r+2 }+2{ _{  }^{ n+1 }{ C } }_{ r+3 }+{ _{  }^{ n+1 }{ C } }_{ r+4 } }{ { _{  }^{ n+1 }{ C } }_{ r+1 }+2{ _{  }^{ n+1 }{ C } }_{ r+2 }+{ _{  }^{ n+1 }{ C } }_{ r+3 } }$$
    $$\displaystyle=1+\cfrac { { _{  }^{ n+2 }{ C } }_{ r+3 }+{ _{  }^{ n+2 }{ C } }_{ r+4 } }{ { _{  }^{ n+2 }{ C } }_{ r+2 }+{ _{  }^{ n+2 }{ C } }_{ r+3 } }$$
    $$\displaystyle=1+\cfrac { { _{  }^{ n+3 }{ C } }_{ r+4 } }{ { _{  }^{ n+3 }{ C } }_{ r+3 } }$$
    $$=\displaystyle\frac{n+4}{r+4}$$
    $$\therefore k=4$$
    Hence, option B.

  • Question 8
    1 / -0
    The value of $$\cfrac { 1 }{ \left( n-1 \right) ! } +\cfrac { 1 }{ \left( n-3 \right) !3! } +\cfrac { 1 }{ \left( n-5 \right) !5! }+.... $$
    Solution
    $$\cfrac { 1 }{ \left( n-1 \right) ! } +\cfrac { 1 }{ \left( n-3 \right) !3! } +\cfrac { 1 }{ \left( n-5 \right) !5! }+.... $$
    $$=\cfrac{1}{n!}\left(\cfrac { n! }{ \left( n-1 \right) ! 1! } +\cfrac { n! }{ \left( n-3 \right) !3! } +\cfrac { n! }{ \left( n-5 \right) !5! }+.... \right)$$
    $$=\cfrac{1}{n!}( ^nC_1+^nC_3+^nC_5+.............)=\cfrac{2^{n-1}}{n!}$$
  • Question 9
    1 / -0
    If $${ \left( 1+x \right)  }^{ n }={ C }_{ 0 }+{ C }_{ 1 }x+{ C }_{ 2 }{ x }^{ 2 }+..........+{ C }_{ n }{ x }^{ R }$$, then the sum
    $${ C }_{ 0 }+({ C }_{ 0 }+{ C }_{ 1 })+({ C }_{ 0 }+{ C }_{ 1 }+{ C }_{ 2 })+.....+({ C }_{ 0 }+{ C }_{ 1 }+{ C }_{ 2 }+.....+{ C }_{ n-1 }$$ is

    Solution
    Simplifying, we get 
    $$n\:^{n}C_{0}+(n-1)\:^{n}C_{1}+(n-2)\:^{n}C_{2}+...(n-(n-1))\:^{n}C_{n-1}+(n-n)\:^{n}C_{n}$$
    $$=n[\:^{n}C_{0}+\:^{n}C_{1}+...\:^{n}C_{n}]-[1.\:^{n}C_{1}+2\:^{n}C_{2}+...n\:^{n}C_{n}]$$
    $$=n.2^{n}-n2^{n-1}$$
    $$=n2^{n-1}(2-1)$$
    $$=n2^{n-1}$$.
  • Question 10
    1 / -0
    If $$n$$ is a positive integer and $${ C }_{ k }={ _{  }^{ n }{ C } }_{ k }$$, find the value of $$\sum _{ k=1 }^{ n }{ { k }^{ 3 }{ \left( \cfrac { { C }_{ k } }{ { C }_{ k-1 } }  \right)  }^{ 2 } } $$
    Solution
    $$\displaystyle \sum _{ k=1 }^{ n }{ { k }^{ 3 }{ \left( \cfrac { { C }_{ k } }{ { C }_{ k-1 } }  \right)  }^{ 2 } } =\sum _{ k=1 }^{ n }{ { k }^{ 3 }{ \left( \frac { n-k+1 }{ k }  \right)  }^{ 2 } } $$
    $$=\sum _{ k=1 }^{ n }{ { k }{ \left( n-k+1 \right)  }^{ 2 } } $$
    $$={ \left( n+1 \right)  }^{ 2 }\sum _{ k=1 }^{ n }{ { k } } +\sum _{ k=1 }^{ n }{ { k }^{ 3 } } -2\left( n+1 \right) \sum _{ k=1 }^{ n }{ { k }^{ 2 } } $$
    $$  =\dfrac { n{ \left( n+1 \right)  }^{ 3 } }{ 2 } +\dfrac { { n }^{ 2 }{ \left( n+1 \right)  }^{ 2 } }{ 4 } -\dfrac { n{ \left( n+1 \right)  }^{ 2 }\left( 2n+1 \right)  }{ 3 } $$
    $$=\cfrac { n{ \left( n+1 \right)  }^{ 2 }(n+2) }{ 12 } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now