Self Studies

Binomial Theorem Test - 25

Result Self Studies

Binomial Theorem Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The sum of coefficients of $$x^{2r},r=1,2,3,...,$$ in the expansion of $$(1+x)^{n}$$ is
    Solution
    $$(1+x)^{n}=a_{0}+a_{1}x+a_{2}x^2+...a_{n}x^{n}$$
    For $$x=1$$ we get
    $$2^{n}=a_{0}+a_{1}+a_{2}+...a_{n}$$ ...(i)
    Substituting x=-1, we get
    $$0=a_{0}-a_{1}+a_{2}+...-a_{n-1}+a_{n}$$ ...(ii)
    Adding i and ii, we get
    $$2^{n}=2(a_{0}+a_{2}+a_{4}+...a_{2r})$$
    $$2^{n-1}=a_{0}+a_{2}+a_{4}+...a_{2r}$$
    Now we know that $$a_{0}=\:^{n}C_{0}=1$$
    By substituting, we get
    $$a_{2}+a_{4}+...a_{2r}+..=2^{n-1}-1$$

    Hence the required answer is $$2^{n-1}-1$$
  • Question 2
    1 / -0
    The sum $$\displaystyle\frac{1}{2}$$ $$^{10}\textrm{C}_{0}-$$ $$^{10}\textrm{C}_{1}+$$ $$2\cdot  ^{10}\textrm{C}_{2}-$$ $$2^{2}\cdot  ^{10}\textrm{C}_{3}$$+...+$$2^{9}\cdot  ^{10}\textrm{C}_{10}$$ is equal to
    Solution
    Let
    $$S_{n}=\frac{1}{2}\:^{10}C_{0}-\:^{10}C_{1}+...\:^{10}C_{10}2^{9}$$
    $$2S_{n}=\:^{10}C_{0}-2\:^{10}C_{1}+2^{2}\:^{10}C_{2}+...\:^{10}C_{10}2^{10}$$
    $$2S_{n}=(1-2)^{10}$$
    $$2S_{n}=(1)$$
    $$S_{n}=\frac{1}{2}$$
  • Question 3
    1 / -0
    The sum of coefficients of all the integral powers of  $$x$$ in the expansion of $$(1+2\sqrt{x})^{40}$$ is
    Solution
    $$(1+2\sqrt{x})^{40}=1+\:^{40}C_{1}(2\sqrt{x})^{1}+\:^{40}C_{2}(2\sqrt{x})^{2}+\:^{40}C_{3}(2\sqrt{x})^{3}+...+\:^{40}C_{40}(2\sqrt{x})^{40}$$
    Hence, all the odd terms will have integral powers of $$x$$.
    Substituting $$x=1$$, we get
    $$3^{40}=a_{0}+a_{1}+a_{2}+a_{3}...+a_{40}$$ ...(i)
    Now consider,
    $$(1-2\sqrt{x})^{40}=1-\:^{40}C_{1}(2\sqrt{x})^{1}+\:^{40}C_{2}(2\sqrt{x})^{2}-\:^{40}C_{3}(2\sqrt{x})^{3}...+\:^{40}C_{40}(2\sqrt{x})^{40}$$
    Taking $$x$$ as $$1$$, we get
    $$1=a_{0}-a_{1}+a_{2}-a_{3}...+a_{40}$$ ...(ii)
    Adding i and, ii we get
    $$3^{40}+1=2[a_{0}+a_{2}+a_{4}+a_{6}...+a_{40}]$$
    $$\dfrac{3^{40}+1}{2}=a_{0}+a_{2}+a_{4}+a_{6}...+a_{40}$$
    Hence the sum of the coefficients, of integral powers of $$x$$ will be
    $$\dfrac{3^{40}+1}{2}$$
    Hence, option D is correct
  • Question 4
    1 / -0
    The sum $$^{10}\textrm{C}_{3}+^{11}\textrm{C}_{3}+^{12}\textrm{C}_{3}+..........+^{20}\textrm{C}_{3}$$ is equal to
    Solution
    Using
    $$\:^{n}C_{r}+\:^{n+1}C_{r}=\:^{n+1}C_{r+1}$$
    $$\:^{10}C_{3}+\:^{11}C_{3}+\:^{12}C_{3}+\:^{13}C_{3}+...\:^{20}C_{3}$$
    $$=[\:^{10}C_{4}+:^{10}C_{3}+\:^{11}C_{3}+\:^{12}C_{3}+\:^{13}C_{3}+...\:^{20}C_{3}]-\:^{10}C_{4}$$
    $$=[\:^{11}C_{4}+:^{11}C_{3}+\:^{12}C_{3}+...\:^{20}C_{3}]-\:^{10}C_{4}$$
    $$=[\:^{12}C_{4}+:^{12}C_{3}+\:^{13}C_{3}+...\:^{20}C_{3}]-\:^{10}C_{4}$$
    :
    :
    :
    $$=\:^{20}C_{4}+\:^{20}C_{3}-\:^{10}C_{4}$$
    $$=\:^{21}C_{4}-\:^{10}C_{4}$$
    $$=\:^{21}C_{17}-\:^{10}C_{6}$$
  • Question 5
    1 / -0
    The sum of last ten coeffficients in the expansion of $$(1+x)^{19}$$ when expanded in ascending powers of $$x$$ is
    Solution
    The last ten coefficients are 
    $$\:^{19}C_{19},\:^{19}C_{18}...\:^{19}C_{11},\:^{19}C_{10}$$
    Hence 
    $$S=\:^{19}C_{19}+\:^{19}C_{18}+...\:^{19}C_{10}$$.
    Now we know, that sum of all coefficients is $$2^{19}$$, that is 
    $$\:^{19}C_{0}+\:^{19}C_{1}+...\:^{19}C_{18}+\:^{19}C_{19}=2^{19}$$.
    Also, $$\:^{n}C_{r}=\:^{n}C_{n-r}$$
    Hence 
    $$\:^{19}C_{0}+\:^{19}C_{1}...+\:^{19}C_{9}+\:^{19}C_{10}+...\:^{19}C_{18}+\:^{19}C_{19}=2^{19}$$

    $$2(\:^{19}C_{10}+\:^{19}C_{11}+...\:^{19}C_{18}+\:^{19}C_{19})=2^{19}$$

    $$2S=2^{19}$$

    $$S=2^{18}$$.
  • Question 6
    1 / -0
    The sum of the series $$\sum _{ r=0 }^{ 10 }{ _{  }^{ 20 }{ { C }_{ r }^{  } } } $$ is
    Solution
    We have, $$\sum _{ r=0 }^{ 10 }{ ^{ 20 }{ { C }_{ r } } } =^{ 20 }{ { C }_{ 0 } }+^{ 20 }{ { C }_{ 1 } }+...+^{ 20 }{ { C }_{ 10 } }$$
    But $$^{ 20 }{ { C }_{ 0 } }+^{ 20 }{ { C }_{ 1 } }+...+^{ 20 }{ { C }_{ 20 } }={ 2 }^{ 20 }$$
    and $$\because \quad ^{ 20 }{ { C }_{ 20 } }=^{ 20 }{ { C }_{ 0 } };^{ 20 }{ { C }_{ 19 } }=^{ 20 }{ { C }_{ 1 } };^{ 20 }{ { C }_{ 18 } }=^{ 20 }{ { C }_{ 2 } }...$$ and $$^{ 20 }{ { C }_{ 11 } }=^{ 20 }{ { C }_{ 9 } }$$
    $$\displaystyle \therefore \sum _{ r=0 }^{ 10 }{ ^{ 20 }{ { C }_{ r } }= } \left( ^{ 20 }{ { C }_{ 0 } }+^{ 20 }{ { C }_{ 1 } }+...+^{ 20 }{ { C }_{ 20 } } \right) -\left( ^{ 20 }{ { C }_{ 11 } }+^{ 20 }{ { C }_{ 12 } }+...+^{ 20 }{ { C }_{ 20 } } \right) \\ ={ 2 }^{ 20 }+^{ 20 }{ { C }_{ 10 } }-\left( ^{ 20 }{ { C }_{ 10 } }+^{ 20 }{ { C }_{ 9 } }+...+^{ 20 }{ { C }_{ 0 } } \right) \\ \Rightarrow 2\left[ ^{ 20 }{ { C }_{ 0 } }+^{ 20 }{ { C }_{ 1 } }+...+^{ 20 }{ { C }_{ 10 } } \right] ={ 2 }^{ 20 }+^{ 20 }{ { C }_{ 10 } }$$
    $$\displaystyle \therefore ^{ 20 }{ { C }_{ 0 } }+^{ 20 }{ { C }_{ 1 } }+...+^{ 20 }{ { C }_{ 10 } }={ 2 }^{ 19 }+\frac { 1 }{ 2 } .^{ 20 }{ { C }_{ 10 } }$$
  • Question 7
    1 / -0
    The sum $$^{20}\textrm{C}_{0}+^{20}\textrm{C}_{1}+^{20}\textrm{C}_{2}+^{20}\textrm{C}_{10}$$ is equal to
    Solution
    $$\:^{20}C_{0}+\:^{20}C_{1}+\:^{20}C_{2}+\:^{20}C_{10}$$
    $$=1+20+\dfrac{20(19)}{2}+\dfrac{20!}{10!(10!)}$$
    $$=21+190+\dfrac{20!}{(10!)^{2}}$$
    $$=211+\dfrac{20!}{(10!)^{2}}$$
    Hence the answer is none of these.
  • Question 8
    1 / -0
    The number of non-zero terms in the expansion of $${ \left( 1+3\sqrt { 2 } x \right)  }^{ 9 }+{ \left( 1-3\sqrt { 2 } x \right)  }^{ 9 }$$ is
    Solution
    In the expansion of $${ \left( 1+3\sqrt { 2 } x \right)  }^{ 9 }+{ \left( 1-3\sqrt { 2 } x \right)  }^{ 9 }$$
    $$2nd,4th,6th,8th$$ and $$10th$$ terms get cancelled.
    $$\therefore$$ Number of non-zero terms in
    $$2\left[ ^{ 9 }{ { C }_{ 0 } }+^{ 9 }{ { C }_{ 2 } }{ \left( 3\sqrt { 2 } x \right)  }^{ 2 }+...+^{ 9 }{ { C }_{ 8 } }{ \left( 3\sqrt { 2 } x \right)  }^{ 8 } \right] $$ is $$5$$
  • Question 9
    1 / -0
    The value of $$\displaystyle \sum_{j=1}^{n}(^{n+1}C_{j}-^{n}C_{j})$$is equal to
    Solution
    Simplifying, we get
    $$(\:^{n+1}C_{1}+\:^{n+1}C_{2}+...\:^{n+1}C_{n})-(\:^{n}C_{1}+\:^{n}C_{2}+...\:^{n}C_{n})$$
    $$=(\:^{n+1}C_{1}+\:^{n+1}C_{2}+...\:^{n+1}C_{n}+\:^{n+1}C_{n+1}-\:^{n+1}C_{n+1})-2^{n}$$
    $$=2^{n+1}-2^{n}-\:^{n+1}C_{n+1}$$
    $$=2^{n}(2-1)-1$$
    $$=2^{n}-1$$
  • Question 10
    1 / -0
    If $$\displaystyle C_{0},C_{1},C_{2},....C_{n}$$ are binomial coefficient in the expansion of $$\displaystyle (1+x)^{n}$$, then value of  $$\displaystyle C_{1}+C_{4}+C_{7}+...$$ equals
    Solution

    Given $$\displaystyle \left ( 1+x \right )^{n}=C_{0}+C_{1}x+C_{2}x^{2}+\cdots +C_{n}x^{n}$$ 
    $$\displaystyle \therefore x^{2}\left ( 1+x \right )^{n}=x^{2}C_{0}+C_{1}x^{3}+C_{2}x^{4}+\cdots +C_{n}x^{n+2}\left ( * \right )$$ 
    Now substituting $$x=1$$,$$\displaystyle \omega , \omega ^{2}in\left ( * \right ),$$ we get $$\displaystyle 2^{n}=C_{0}+C_{1}+C_{2}+C_{3}+\cdots +C_{n}\cdots \left ( 1 \right )$$
     $$\displaystyle \omega ^{2}\left ( 1+\omega  \right )^{n}=C_{0}\omega ^{2}+C_{1}\omega ^{3}+C_{2}\omega ^{4}+\cdots +C_{n}.\omega ^{n+2}$$...(2) 
    $$\displaystyle \omega ^{4}\left ( 1+\omega ^{2} \right )^{n}=C_{0}\omega ^{4}+C_{1}\omega ^{6}+C_{2}\omega ^{8}+\cdots +C_{n}.\omega ^{2n+4}$$...(3) 
    Now adding (1), (2) and (3) we get $$\displaystyle 2^{n}+\omega, ^{2}\left ( 1+\omega  \right )^{n}+\omega ^{4}\left ( 1+\omega ^{2} \right )^{n}$$ 
    $$\displaystyle =C_{0}\left ( 1+\omega +\omega ^{2} \right )+C_{1}\left ( 1+\omega ^{3}+\omega ^{6} \right )+C_{2}\left ( 1+\omega +\omega ^{2} \right )$$
     $$\displaystyle +....=3\left ( C_{1}+C_{4}+C_{7}+\cdots  \right )$$ (other terms vanished).$$\displaystyle 3\left ( C_{1}+C_{4}+C_{7}+\cdots  \right )$$ $$\displaystyle =2^{n}+\omega ^{2}\left ( \cos\frac{n\pi }{2}+i \sin\frac{n\pi }{3} \right )+\omega ^{4}\left ( \cos\frac{n\pi }{3}-i \sin \frac{n\pi }{3} \right )$$ $$\displaystyle =2^{n}+\left ( \omega ^{2}+\omega  \right )\cos\frac{n\pi }{3}+i\left ( \omega ^{2}-\omega  \right )\sin \frac{n\pi }{3}$$ $$\displaystyle =2^{n}-\cos\frac{n\pi }{3}+i\left ( -\sqrt{3i} \right )\sin\frac{n\pi }{3}$$ As $$\displaystyle \omega =\frac{-1+i\sqrt{3}}{2}and \omega ^{2}=\frac{-1-i\sqrt{3}}{2}$$ $$\displaystyle \omega ^{2}-\omega =-\frac{1}{2}-\frac{i\sqrt{3}}{2}+\frac{1}{2}-\frac{i\sqrt{3}}{2}=i\sqrt{3}$$ $$\displaystyle \omega ^{2}-\omega =-\sqrt{3}$$ $$\displaystyle \therefore 3\left ( C_{1}+C_{4}+C_{7}\cdots  \right )=2^{n}-\cos\frac{n\pi }{3}+\sqrt{3}\sin \frac{n\pi }{3}$$ $$\displaystyle C_{1}+C_{4}+C_{7}+\cdots =\frac{1}{3}\left ( 2^{n}-\cos\frac{n\pi }{3}+\sqrt{3}\sin \frac{n\pi }{3} \right )$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now