Self Studies

Binomial Theorem Test - 26

Result Self Studies

Binomial Theorem Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the third term in the expansion of $$\displaystyle (\frac{1}{x}+x^{\log_{10}x})^{5} $$ is $$1,000$$, then $$x$$-equals
    Solution
    $$T_{2+1}$$
    $$=T_{3}$$
    $$=\:^{5}C_{2}x^{-3}x^{2log_{10}(x)}$$
    $$=10^{3}$$
    Therefore
    $$x^{-3}x^{2log_{10}(x)}=100$$
    $$x^{2log_{10}(x)-3}=100$$
    Now x has to be in powers of 10.
    Therefore
    Let $$x=10^k$$
    Above equation reduces to
    $$10^{k(2k-3)}=10^{2}$$
    $$2k^{2}-3k-2=0$$
    $$(2k+1)(k-2)=0$$
    $$k=2$$ and $$k=\frac{-1}{2}$$
    Hence $$x=10^{2}$$ and $$x=10^{-\frac{1}{2}}$$
  • Question 2
    1 / -0
    In the expansion of $$\displaystyle (1+x)^{23}$$, if $$\displaystyle r^{th}$$ ,$$\displaystyle (r+1)^{th}$$ , and $$\displaystyle (r+2)^{th}$$ terms are in A.P., then value of  $$\displaystyle ^{23}C_{r}$$ equals
    Solution
    Hence

    $$\:^{n}C_{r-1}$$ $$\:^{n}C_{r}$$ and $$\:^{n}C_{r+1}$$ are in A.P.

    For the above terms to be, in A.P, they must follow

    $$(n-2r)^{2}=n+2$$

    Replacing n by 23, we get

    $$529+4r^{2}-92r=23+2$$

    $$4r^{2}-92r+504=0$$

    $$r^{2}-23r+126=0$$

    $$(r-14)(r-9)=0$$

    $$r=14$$ and $$r=9$$

    $$\:^{23}C_{r}$$$$=\:^{23}C_{9}$$
  • Question 3
    1 / -0
    The number of integral terms in the expansion of $$\displaystyle \left ( \sqrt{3}+\sqrt[5]{5} \right )^{256}$$ is
    Solution
    Total number of integral terms will be
    $$\cfrac{256}{L.C.M(2,5)}+1$$
    $$=\cfrac{256}{10}+1$$
    $$=25.6+1$$
    However $$25.6$$ is not an integer, hence take $$[25.6]=25$$ where $$[x]$$ is the greatest integer function.
    Hence total number of integral term, will be
    $$25+1$$
    $$=26$$
  • Question 4
    1 / -0
    If $$\displaystyle C_{r}=^{n}C_{r}$$ and $$\displaystyle (C_{0}+C_{1})(C_{1}+C_{2})...(C_{n-1}+C_{n})=k$$ $$\displaystyle (C_{0} C_{1}C_{2}...C_{n})$$ then the value of $$ \displaystyle k$$ equals
    Solution

    $$\:^{n}C_{r+1}+\:^{n}C_{r}$$
    $$=\:^{n+1}C_{r+1}$$
    Hence simplifying the terms, we get
    $$\:^{n+1}C_{1}.\:^{n+1}C_{2}....\:^{n+1}C_{n}$$
    Now 
    $$\:^{n+1}C_{1}$$
    $$=\dfrac {(n+1)!}{n!.1!}$$
    $$=\dfrac {(n+1)}{n}\:^{n}C_{1}$$
    Similarly
    $$\:^{n+1}C_{2}$$
    $$=\dfrac {(n+1)!}{(n-1)!.2!}$$
    $$=\dfrac {(n+1)}{(n-1)}\:^{n}C_{2}$$
    Hence substituting, in the above expression, we get
    $$\dfrac {(n+1)^{n}}{n!}(\:^{n}C_{0}.\:^{n}C_{1}...\:^{n}C_{n})$$
    Comparing coefficients, we get
    $$K=\dfrac {(n+1)^{n}}{n!}$$

  • Question 5
    1 / -0
    If $$\displaystyle P$$ be the sum of odd term and  $$\displaystyle Q$$ that of even terms in the expansion of  $$\displaystyle (x+a)^{n}$$ , then the value of  $$\displaystyle [(x+a)^{2n}-(x-a)^{2n}]$$ equals
    Solution
    $$P=\dfrac{(x+a)^{n}+(x-a)^{n}}{2}$$ ...(i)
    $$Q=\dfrac{(x+a)^{n}-(x-a)^{n}}{2}$$ ...(ii)
    Hence, $$2P.2Q$$
    $$=4PQ$$
    $$=[(x+a)^{n}+(x-a)^{n}][(x+a)^{n}-(x-a)^{n}]$$
    $$=(x+a)^{2n}-(x-a)^{2n}$$
  • Question 6
    1 / -0
    $$^{ n+1 }{ { C }_{ 2 }^{  } }+2\left[ _{  }^{ 2 }{ { C }_{ 2 }^{  } }+^{ 3 }{ { C }_{ 2 }^{  } }+^{ 4 }{ { C }_{ 2 }^{  } }+...+^{ n }{ { C }_{ 2 }^{  } } \right] =$$
    Solution
    We have,
    $$^{ n+1 }{ { C }_{ 2 } }+2\left[ ^{ 2 }{ { C }_{ 2 } }+^{ 3 }{ { C }_{ 2 } }+^{ 4 }{ { C }_{ 2 } }+...+^{ n }{ { C }_{ 2 } } \right] =^{ n+1 }{ { C }_{ 2 } }+2\left[ ^{ 3 }{ { C }_{ 3 } }+^{ 3 }{ { C }_{ 2 } }+^{ 4 }{ { C }_{ 2 } }+...+^{ n }{ { C }_{ 2 } } \right] \\ =^{ n+1 }{ { C }_{ 2 } }+2\left[ ^{ 4 }{ { C }_{ 3 } }+^{ 4 }{ { C }_{ 2 } }+...+^{ n }{ { C }_{ 2 } } \right] =^{ n+1 }{ { C }_{ 2 } }+2\left[ ^{ 5 }{ { C }_{ 3 } }+...+^{ n }{ { C }_{ 2 } } \right] \\ =^{ n+1 }{ { C }_{ 2 } }+2.^{ n+1 }{ { C }_{ 3 } }=^{ n+1 }{ { C }_{ 2 } }+^{ n+1 }{ { C }_{ 3 } }+^{ n+1 }{ { C }_{ 3 } }=^{ n+2 }{ { C }_{ 3 } }+^{ n+1 }{ { C }_{ 3 } }$$
    $$\displaystyle =\frac { n\left( n+1 \right) \left( n+2 \right)  }{ 6 } +\frac { n\left( n+1 \right) \left( n-1 \right)  }{ 6 } =\frac { n\left( n+1 \right) \left( 2n+1 \right)  }{ 6 } $$
  • Question 7
    1 / -0
    Number of terms in the expansion of $$ \left ( 1-x \right )^{51}\left ( 1+x+x^{2} \right )^{50}$$ of

    Solution
    $$(1-x)^{51}(1+x+x^{2})^{50}$$
    $$=(1-x)[(1-x)(1+x+x^{2})]^{50}$$
    $$=(1-x)(1-x^{3})^{50}$$
    $$=(1-x)[1-a_{1}x^{3}+a_{2}x^{6}-a_{3}x^{9}+....a_{50}x^{150}]$$
    $$=(1-a_{1}x^{3}+a_{2}x^{6}-a_{3}x^{9}+....a_{50}x^{150})-(x-a_{1}x^{4}+a_{2}x^{7}-a_{3}x^{10}+....a_{50}x^{151})$$
    $$=1-x-a_{1}x^{3}+a_{1}x^{4}+a_{2}x^{6}-a_{2}x^{7}+.....$$
    Hence no terms gets cancelled.
    Thus the total number of terms will be
    $$51+51$$
    $$=2(51)$$
    $$=102$$
  • Question 8
    1 / -0
    If $${C_{r}}^{13}$$ denoted by $$C_{r}$$ then value of $$c_{1}+c_{5}+c_{7}+c_{9}+c_{11}$$ is equal to
    Solution
    Consider 
    $$(1+x)^{13}=\:^{13}C_{0}+\:^{13}C_{1}.x^{1}+\:^{13}C_{2}.x^{2}+\:^{13}C_{3}.x^{3}...+\:^{13}C_{13}.x^{13}$$
    Now Let x=1.
    $$2^{13}=\:^{13}C_{0}+\:^{13}C_{1}+\:^{13}C_{2}+\:^{13}C_{3}...+\:^{13}C_{13}$$
    $$=2[\:^{13}C_{0}+\:^{13}C_{1}+\:^{13}C_{2}+\:^{13}C_{3}...+\:^{13}C_{6}]$$
    Hence
    $$2^{12}=a_{0}+a_{1}+...a_{6}$$ ...(i)
    Similarly 
    $$(1-x)^{13}|_{x=-1}=a_{0}-a_{1}+a_{2}-a_{3}...a_{6}=0...(ii)$$
    Adding i and ii, we get 
    $$2^{12}=2(a_{0}+a_{2}+a_{4}+a_{6})$$
    $$=2(a_{0}+a_{11}+a_{9}+a_{7})$$
    Hence
    $$2^{11}=a_{0}+a_{11}+a_{9}+a_{7}$$ ...(a)
    Subtracting ii from i, we get 
    $$2^{12}=2(a_{1}+a_{3}+a_{5})$$
    Or 
    $$2^{11}=a_{1}+a_{3}+a_{5}$$ ...(b)
    Adding a and b, we get 
    $$2^{12}=a_{1}+a_{5}+a_{7}+a_{9}+(a_{0}+a_{3})$$
    $$2^{12}=a_{1}+a_{5}+a_{7}+a_{9}+(1+\:^{13}C_{3})$$
    $$2^{12}=a_{1}+a_{5}+a_{7}+a_{9}+(287)$$
    $$2^{12}-287=a_{1}+a_{5}+a_{7}+a_{9}$$.
  • Question 9
    1 / -0
    If coefficient of $$x^{100}$$ in $$1+\left ( 1+x \right )\left ( 1+x \right )^{2}+.....+\left ( 1+x \right )^{n}\left ( if\:n \geq 100\right )$$ is $$C_{101}^{201}$$ then the value of n equals

    Solution
    $${ ^{ n }{ C } }_{ r }+{ ^{ n }{ C } }_{ (r+1) }={ ^{ (n+1) }{ C } }_{ (r+1) }$$
    coefficient of $${ x }^{ 100 }$$ is $$^{ 100 }{ { C }_{ 100 } }+^{ 101 }{ { C }_{ 100 } }+^{ 102 }{ { C }_{ 100 } }+........+^{ n }{ { C }_{ 100 } }$$.
    Which is equal to $${ ^{ (n+1) }{ C } }_{ 101 }$$.
    Therefore, $$n+1=201$$
    Which implies $$ n=200$$
  • Question 10
    1 / -0
    If $$C_{0},C_{1},C_{2},.....C_{n},$$ are binomial coefficients,then $$\displaystyle\sum_{k= 0}^{n} C_{k}\:\sin kx \cos \left ( n-k \right )x$$ equals

    Solution
    $$S=\sum \:^{n}C_{k} sin(kx) cos(n-k)x$$
    Now writing the terms in reverse, we get
    $$S=\sum \:^{n}C_{n-k} sin(n-k)x cos(k)x$$
    Hence
    $$2S=\sum \:^{n}C_{k} [sin(kx) cos((n-k)x)+cos(kx)sin((n-k)x)]$$
    $$=\sum \:^{n}C_{k} sin(nx)$$
    Hence
    $$2S=2^{n} sin(nx)$$
    $$S=2^{n-1}sin(nx)$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now