Self Studies

Binomial Theorem Test - 27

Result Self Studies

Binomial Theorem Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$x+y= 1$$ then $$\displaystyle\sum_{r= 0}^{n} r^{n}C_{r}x^{r}y^{n-r}$$ equals
    Solution
    Expanding, we get
    $$\:^{n}C_{1}xy^{n-1}+2\:^{n}C_{2}x^{2}y^{n-2}+3\:^{n}C_{3}x^{3}y^{n-3}+...n\:^{n}C_{n}x^{n}$$
    $$=x[\:^{n}C_{1}y^{n-1}+2\:^{n}C_{2}x^{1}y^{n-2}+3\:^{n}C_{3}x^{2}y^{n-3}+...n\:^{n}C_{n}x^{n-1}]$$
    $$=x[\dfrac{d(y+x)^{n}}{dx}]$$ ...(keeping $$y$$ constant.)
    $$=x(n(x+y)^{n-1})$$
    Now $$x+y=1$$,
    Hence we get
    $$x(n)$$
    $$=nx$$
  • Question 2
    1 / -0
    If $$A$$ is the sum of the odd terms and $$B$$ the sum of even terms in the expansion of $${ \left( x+a \right)  }^{ n }$$, then $${ A }^{ 2 }-{ B }^{ 2 }=$$
    Solution
    We have,
    $${ \left( x+a \right)  }^{ n }=^{ n }{ { C }_{ 0 }^{  } }{ x }^{ n }+^{ n }{ { C }_{ 1 }^{  } }{ x }^{ n-1 }{ a }^{ 1 }+^{ n }{ { C }_{ 2 }^{  } }{ x }^{ n-2 }{ a }^{ 2 }+^{ n }{ { C }_{ 3 }^{  } }{ x }^{ n-3 }{ a }^{ 3 }+...+^{ n }{ { C }_{ n }^{  } }{ a }^{ n }\\ =\left( ^{ n }{ { C }_{ 0 }^{  } }{ x }^{ n }+^{ n }{ { C }_{ 2 }^{  }{ x }^{ n-2 }{ a }^{ 2 } }+... \right) +\left( ^{ n }{ { C }_{ 1 }^{  } }{ x }^{ n-1 }{ a }^{ 1 }+^{ n }{ { C }_{ 3 }^{  } }{ x }^{ n-3 }{ a }^{ 3 }+... \right) \\ =A+B\\ { \left( x-a \right)  }^{ n }=^{ n }{ { C }_{ 0 }^{  } }{ x }^{ n }-^{ n }{ { C }_{ 1 }^{  } }{ x }^{ n-1 }{ a }^{ 1 }+^{ n }{ { C }_{ 2 }^{  } }{ x }^{ n-2 }{ a }^{ 2 }-^{ n }{ { C }_{ 3 }^{  } }{ x }^{ n-3 }{ a }^{ 3 }\\ =\left( ^{ n }{ { C }_{ 0 }^{  } }{ x }^{ n }+^{ n }{ { C }_{ 2 }^{  }{ x }^{ n-2 }{ a }^{ 2 } }+... \right) -\left( ^{ n }{ { C }_{ 1 }^{  } }{ x }^{ n-1 }{ a }^{ 1 }+^{ n }{ { C }_{ 3 }^{  } }{ x }^{ n-3 }{ a }^{ 3 }+... \right) \\ =A-B\\ \therefore { A }^{ 2 }-{ B }^{ 2 }=\left( A+B \right) \left( A-B \right) ={ \left( x+a \right)  }^{ n }{ \left( x-a \right)  }^{ n }={ \left( { x }^{ 2 }-{ a }^{ 2 } \right)  }^{ n }$$
  • Question 3
    1 / -0
    If $$\displaystyle \left ( 1+x+x^{2} \right )^{n}=\sum_{r=0}^{2n} a_{r}x^{r}=a_{0}+a_{1}x+a_{2}x^{2}+...+a^{2n}x^{2n}$$ and
    $$ \displaystyle P=a_{0}+a_{3}+a_{6}+...$$
    $$ \displaystyle Q=a_{1}+a_{4}+a_{7}+...$$
    $$ \displaystyle R=a_{2}+a_{5}+a_{8}+...$$
    then the set of values of $$ P, Q, R $$ are respectively equals
    Solution
    Sum of all coefficients will be $$3^{n}$$
    $$=3(3^{n-1})$$
    Now
    The sum of coefficients of $$a_{0}+a_{3}+a_{6}....$$
    will be equal to $$a_{1}+a_{4}+a_{7}+....$$ which will be further equal to
    $$a_{2}+a_{5}+a_{8}+...$$
    $$=$$sum of all coefficients/3
    $$=\dfrac{3(3^{n-1})}{3}=3^{n-1}$$
  • Question 4
    1 / -0
    The evaluated value of $$\displaystyle \sum_{i=0}^{n} \sum_{j=1}^{n}$$ $$\displaystyle ^{n}C_{j}$$ $$\displaystyle ^{j}C_{i},$$ $$\displaystyle i\leq j$$
    Solution
    Expanding, we get 
    $$\:^{n}C_{1}(\:^{1}C_{0}+\:^{1}C_{1})+\:^{n}C_{2}(\:^{2}C_{0}+\:^{2}C_{1}+\:^{2}C_{2})+....\:^{n}C_{n}(\:^{n}C_{1}+\:^{n}C_{2}+...\:^{n}C_{n})$$
    $$=\:^{n}C_{1}2^{1}+\:^{n}C_{2}2^{2}+...\:^{n}C_{n}2^{n}$$
    $$=\:^{n}C_{0}2^{0}+\:^{n}C_{1}2^{1}+\:^{n}C_{2}2^{2}+...\:^{n}C_{n}2^{n}-[\:^{n}C_{0}2^{0}]$$
    $$=(1+2)^{n}-1$$
    $$=3^{n}-1$$
  • Question 5
    1 / -0
    If $$C_{0},C_{1},C_{2}....,C_{n}$$ are Binomial Coefficients, such that $$\displaystyle S_{n}=\sum_{r=0}^{n}\frac{1}{{C_{r}}^{n}}$$ and $$\displaystyle t_{n}= \sum_{r= 0}^{n}\frac{r}{{C_{r}}^{n}}$$ then $$\displaystyle \frac{t_{n}}{s_{n}}$$ equals

    Solution
    $$\displaystyle S_{ n }=\sum _{ r=0 }^{ n }{ \frac { 1 }{ ^{ n }{ C }_{ r } }  } =\sum _{ r=0 }^{ \frac { n }{ 2+1 }  }{ \frac { 1 }{ ^{ n }{ C }_{ r } } +\frac { 1 }{ ^{ n }{ { C }_{ n-r } } }  } $$
    $$\displaystyle \Rightarrow { S }_{ n }=\sum _{ r=0 }^{ \frac { n+1 }{ 2 }  }{ \frac { 2 }{ ^{ n }{ C_{ r } } } =2 } \sum _{ r=0 }^{ \frac { n+1 }{ 2 }  }{ \frac { 1 }{ ^{ n }{ C }_{ r } }  } $$
    $$\displaystyle \therefore { t }_{ n }=\sum _{ r=0 }^{ n }{ \frac { r }{ ^{ n }{ C }_{ r } }  } =\sum _{ r=0 }^{ \frac { n+1 }{ 2 }  }{ \frac { r+\left( n-r \right)  }{ ^{ n }{ { C }_{ r } } }  } $$
    $$\displaystyle \Rightarrow n\sum _{ r=0 }^{ n }{ \frac { 1 }{ ^{ n }{ C }_{ r } }  } =n\left( \frac { { S }_{ n } }{ 2 }  \right) =\frac { n }{ 2 } { S }_{ n }$$

    Thus $$\dfrac{t_n}{S_n} = \dfrac{n}{2}$$
  • Question 6
    1 / -0
    The sum of the coefficients of all odd exponets of $$\displaystyle x$$ in the product of $$\displaystyle (1-x +x^{2}-x^{3}+x^{4}+...-x^{49}+x^{50})\times(1+x+x^{2}+x^{3}+...+x^{50})$$ equals
    Solution
    Coefficient of $$x^{1}$$ will be
    $$1+(-1)$$
    $$=0$$ ..(i)
    Coefficient of $$x^{3}$$ will be
    $$1+(-1)+1+(-1)$$
    $$=0$$
    Hence the coefficients of $$x^{n}$$ where n is odd is zero.
  • Question 7
    1 / -0
    If$$\displaystyle\left ( 1+x \right )^{n}= \sum_{r= 0}^{n}C_{r}x^{r}$$, then the value of $$C_{0}-C_{2}+C_{4}-C_{6}+C_{8}-C_{10}+...$$ equals
    Solution
    $$(1+x)^{n}=\:^{n}C_{0}+\:^{n}C_{1}x+\:^{n}C_{2}x^{2}+...\:^{n}C_{n}x^{n}$$
    And
    $$(1-x)^{n}=\:^{n}C_{0}-\:^{n}C_{1}x+\:^{n}C_{2}x^{2}+...(-1)^{n}\:^{n}C_{n}x^{n}$$
    Adding, we get
    $$(1+x)^{n}+(1-x)^{n}=2[\:^{n}C_{0}+\:^{n}C_{2}x^{2}+\:^{n}C_{4}x^{4}+\:^{n}C_{6}x^{6}+...]$$
    Substituting, $$x=\sqrt{-1}=i$$ we get
    $$(1+i)^{n}+(1-i)^{n}=2[\:^{n}C_{0}-\:^{n}C_{2}+\:^{n}C_{4}x^{4}-\:^{n}C_{6}x^{6}+...]$$
    $$2^{\dfrac{n}{2}-1}[e^{\dfrac{in\pi}{4}}+e^{\dfrac{-in\pi}{4}}]=\:^{n}C_{0}-\:^{n}C_{2}+\:^{n}C_{4}x^{4}-\:^{n}C_{6}x^{6}+...$$
    Hence
    Solving the LHS, we get $$2^{\frac{n}{2}}\cos(\displaystyle \dfrac{n\pi}{4})$$
  • Question 8
    1 / -0
    If $$\left ( 1+x \right )^{n}= \sum_{r= 0}^{n}C_{r}x^{r}$$ then the value of $$3C_{1}+7C_{2}+11C^{3}+....+\left ( 4n-1 \right )C_{n}$$ is
    Solution
    Let $$n=1$$, we get 
    $$S_{1}=3\:^{1}C_{1}$$
    $$=3$$
    $$=(2(1)-1)2^{1}+1$$
    Let $$n=2$$ , we get
    $$S_{2}=3\:^{2}C_{1}+7\:^{2}C_{2}$$
    $$=6+7$$
    $$=13$$
    $$=(2(2)-1)2^{2}+1$$
    Let $$n=3$$, we get
    $$S_{3}=3\:^{3}C_{1}+7\:^{3}C_{2}+11\:^{3}C_{3}$$
    $$=9+21+11$$
    $$=41$$
    $$=(2(3)-1)2^{3}+1$$
    Hence
    $$S_{n}$$$$=(2(n)-1)2^{n}+1$$
  • Question 9
    1 / -0
    The Coefficient of $$x^{53}$$ in $$\sum_{m= 0}^{100}{C_{m}}^{100}\left ( x-3 \right )^{100-m}2^{m}$$ is
    Solution
    The general term is
    $$G$$
    $$=\:^{100}C_{m}(x-3)^{100-m}2^{m}$$
    This is the general term of
    $$((x-3)+2)^{100}$$
    $$=(x-1)^{100}$$
    $$=(1-x)^{100}$$
    Hence the coefficient of $$x^{53}$$ is
    $$T_{54}$$
    $$=(-1)^{53}\:^{100}C_{53}$$
    $$=-\:^{100}C_{53}$$
  • Question 10
    1 / -0
    The number of terms with integral coefficient in the expansion of $$\left ( 17^{\dfrac 13} +35^{\dfrac 12}\right )^{300}$$ is
    Solution
    The number of rational terms will be
    $$1+\dfrac{300}{L.C.M(3,2)}$$

    $$=1+\dfrac{300}{6}$$

    $$=1+50=51$$ rational terms.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now