Self Studies

Binomial Theorem Test - 28

Result Self Studies

Binomial Theorem Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The sum of the series $$\displaystyle\sum_{r=0}^{n}\left ( ^{n+1}C_{r} \right ) $$ equals
    Solution
    Let $$\sum_{r=0}^{n} (^{n+1}C_r)$$ be $$f$$.

    $$f=\sum_{r=0}^n (^{n+1}C_r)$$

    Consider the expansion of $$(1+x)^{n+1}$$.
    $$(1+x)^{n+1}=\sum_{k=0}^{n+1}  (^{n+1}C_r 1^{n+1-k} x^{k}) $$
    Substituting $$x=1$$ in above equation
    $$(1+1)^{n+1}=\sum_{k=0}^{n+1} (^{n+1}C_k) = f + ^{n+1}C_{n+1}$$

    $$\therefore f=2^{n+1}-1$$

    The value of asked expression is $$2^{n+1}-1$$.
  • Question 2
    1 / -0
    the $$7th$$ term in $$\displaystyle { \left( \frac { 1 }{ y } +{ y }^{ 2 } \right)  }^{ 10 }$$, when expanded in descending power of $$y$$, is
    Solution
    When $$\displaystyle { \left( \frac { 1 }{ y } +{ y }^{ 2 } \right)  }^{ 10 }$$ is expanded, the power of $$y$$ go on increasing as the terms proceed.
    Hence it is expanded in ascending powers of $$y$$.
    So $$\displaystyle { \left( { y }^{ 2 }+\frac { 1 }{ y }  \right)  }^{ 10 }$$, when expanded will be in descending power of $$y$$.
    Hence $$\displaystyle { t }_{ 7 }=_{  }^{ 10 }{ { C }_{ 6 }^{  } }{ \left( { y }^{ 2 } \right)  }^{ 4 }{ \left( \frac { 1 }{ y }  \right)  }^{ 6 }=\frac { 10\times 9\times 8\times 7 }{ 4\times 3\times 2\times 1 } { y }^{ 2 }=210{ y }^{ 2 }$$
  • Question 3
    1 / -0
    Number of rational term is the expansion of $$\left ( 7^{1/3}+11^{1/9} \right )^{729}$$
    Solution
    Since 7 and 11 are prime numbers, hence application of general formula for number of rational terms will be
    $$=1+\dfrac{729}{L.C.M(3,9)}$$

    $$=1+\dfrac{729}{9}$$

    $$=1+81$$
    $$=82$$ rational terms.
  • Question 4
    1 / -0
    The values of $$x$$ in the expansion $$\displaystyle \left ( x+x^{log_{10}x} \right )^{5}$$ , if the third term in the expansion is $$10,00,000$$
    Solution
    $$T_{3}$$ $$=\:^{5}C_{2}x^{3+2log_{10}(x)}$$
    $$=10^6$$
    $$x^{3+2log_{10}(x)}=10^{5}$$
    Now x has to be in powers of $$10$$.
    Let $$x=10^{k}$$
    Therefore, $$10^{k(3+2k)}=10^{6}$$
    $$2k^{2}+3k=5$$
    $$2k^{2}+3k-5=0$$
    $$2k^{2}+5k-2k-5=0$$
    $$(k-1)(2k+5)=0$$
    $$k=1$$ and $$k=\frac{-5}{2}$$
    Therefore, $$x=10$$ and $$x=10^{\frac{-5}{2}}$$

  • Question 5
    1 / -0
    If the sum of the coefficients in the expansion of $$\left ( 1+2x^{} \right )^{m}$$ and $$\left ( 2+x \right )^{n}$$ are respectively $$6561$$ and $$243$$, then the position of the point $$\left ( m,n \right )$$ with respect to circle $$x^{2}+y^{2}-4x-6y-32=0$$
    Solution
    Substituting $$x=1$$, we get
    $$3^{m}=6561$$
    $$\Rightarrow 3^{m}=3^{8}$$
    $$\Rightarrow m=8$$
    And $$3^{n}=243$$
    $$3^{n}=3^{5}$$
    $$ \Rightarrow n=5$$
    Substituting the point $$(m,n)$$ in the given equation of circle we get
    $$8^{2}+5^{2}-4(8)-6(5)-32$$
    $$=64+25-32-30-32$$
    $$=25-30$$
    $$=-5$$
    $$-5<0$$ hence the point is inside the circle.
  • Question 6
    1 / -0
    If the sum of the coefficients in the expansion of $$(1+2x)^{n}$$ is $$2,187$$, the greatest  term in the expansion, if $$\displaystyle x = \frac{1}{2}$$ is/are
    Solution
    Substituting $$x=1$$ for the sum of coefficients of the given expansion.
    $$3^{n}=2187$$
    $$\log_{3}(n)=\log_{3}(2187)$$
    $$n=7$$
    Hence the expansion will be of the form $$(1+2x)^{7}$$
    Now there will be total of 8 terms, and for $$x=\frac{1}{2}$$ the value of a term will only depend on its binomial coefficient.
    Therefore the greatest terms will be the set of two middle terms. which are the 4th term and the 5th term.
  • Question 7
    1 / -0
    If $$\displaystyle\left ( 1+x \right )^{n}=\sum_{r=0}^{n}C_{r}x^{r}$$ and $$\sum { \sum _{ 0\le i<j\le n }{ { C }_{ i }\times { C }_{ j } }  } $$ represent the products of the $$C_{i}$$'s taken two at a time, then its value equals
    Solution
    $$A=\sum { \sum _{ 0\le i<j\le 1 }{ { C }_{ i }\times { C }_{ j } }  } $$ 
     so, $$A=\cfrac { 1 }{ 2 } \times ({ (\sum _{ r=0 }^{ n }{ { C }_{ i }) }  }^{ 2 })-\sum _{ r=0 }^{ n }{ { { C }_{ i } }^{ 2 } } )$$
    therefore our required answer is option C.
    $$\sum _{ i=0 }^{ n }{ { ({ C }_{ i }) }^{ 2 }= } ^{ 2n }{ { C }_{ n } }$$
    $${ (\sum _{ i=0 }^{ n }{ { C }_{ i } } ) }^{ 2 }={ 2 }^{ 2n }$$
  • Question 8
    1 / -0
    Sum of the coefficients of the terms of degree $$m$$ in the expansion of
    $${ (1+x) }^{ n }{ (1+y) }^{ n }{ (1+z) }^{ n }$$ is
    Solution
    The Coefficient of $$x^{m}$$ $$=$$ Number of ways of choosing $$m$$ balls out of $$n$$ black balls, $$n$$ green balls and $$n$$ blue ball.
    Hence total number of balls $$=3n$$.
    Required is $$m$$.
    Hence required combination is $$\:^{3n}C_{m}$$.
    Hence the coefficient of $$x^{m}$$ in $$(1+x)^{n}(1+y)^{n}(1+z)^{n}$$
    $$=\:^{3n}C_{m}$$.
  • Question 9
    1 / -0
    Value of the expression $${ C }_{ 0 }^{ 2 }+{ C }_{ 1 }^{ 2 }+{ C }_{ 2 }^{ 2 }+.....+(n+1){ C }_{ n }^{ 2 }$$ is
    Solution
    Let  $$S = { C }_{ 0 }^{ 2 }+{ C }_{ 1 }^{ 2 }+{ C }_{ 2 }^{ 2 }+.....n{ C }_{ n-1 }^{ 2 }+(n+1){ C }_{ n }^{ 2 }\quad ......(1)$$
    using $${ C }_{ r }={ C }_{ n-r }$$, we write $$(1)$$ in the reverse order to obtain
    $$S=(n+1){ C }_{ 0 }^{ 2 }+{ C }_{ 1 }^{ 2 }+....2{ C }_{ n-1 }^{ 2 }+{ C }_{ n }^{ 2 }\quad ......(2)$$
    Adding $$(1)$$ and $$(2)$$, we get
    $$2S=(n+2)\left[

    { C }_{ 0 }^{ 2 }+{ C }_{ 1 }^{ 2 }+......+{ C }_{ n }^{ 2 } \right]

    \quad =(n+2)\quad ({ _{  }^{ 2n }{ C } }_{ n })$$
    $$\Rightarrow \quad S=\left( \cfrac { n }{ 2 } +1 \right) ({ _{  }^{ 2n }{ C } }_{ n })$$
  • Question 10
    1 / -0

    Directions For Questions

    If a, b are prime numbers, $$ \displaystyle n\in N $$ then the rational terms in the expansion of $$ \displaystyle \left ( a^{\dfrac 1p}+a^{\dfrac 1q} \right )^{n} $$ are the terms in which indices of a & b are integral numbers.

    On the basis of above information answer the following questions.

    ...view full instructions

    In the expansion of $$ \displaystyle \left ( \sqrt{2} + \sqrt[5]{3}\right )^{120} $$ the number of irrational terms is
    Solution
    Total number of rational terms is
    $$\dfrac{120}{L.C.M(5,2)}+1$$
    $$=\dfrac{120}{10}+1$$
    $$=13$$
    Hence total number of irrational terms are
    $$=121-13$$
    $$=108$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now