Self Studies

Binomial Theorem Test - 29

Result Self Studies

Binomial Theorem Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the fourth term in the expansion of $$\displaystyle { \left( \sqrt { \frac { 1 }{ { x }^{ \log { x } +1 } }  } +{ x }^{ 1/12 } \right)  }^{ 6 }$$ is equal to $$200$$ and $$x>1$$, then $$x$$ is equal to
    Solution
    Given $${ T }_{ 4 }=200$$
    $$\displaystyle \Rightarrow ^{ 6 }{ { C }_{ 3 } }{ \left( \sqrt { \frac { 1 }{ { x }^{ \log _{ 10 }{ x+1 }  } }  }  \right)  }^{ 3 }{ \left( { x }^{ \frac { 1 }{ 12 }  } \right)  }^{ 3 }=200$$
    $$\displaystyle \Rightarrow 20\times { x }^{ \frac { 3 }{ 2\left( \log _{ 10 }{ x+1 }  \right)  } +\frac { 1 }{ 4 }  }=200\Rightarrow { x }^{ \left( \frac { 3 }{ 2\left( \log _{ 10 }{ x+1 }  \right)  } +\frac { 1 }{ 4 }  \right)  }=10$$
    $$\displaystyle \Rightarrow \left( \frac { 3 }{ 2\left( \log _{ 10 }{ x+1 }  \right)  } +\frac { 1 }{ 4 }  \right) =\log _{ x }{ 10 } =\frac { 1 }{ \log _{ 10 }{ x }  } $$
    $$\displaystyle \Rightarrow \frac { 3 }{ 2\left( y+1 \right)  } +\frac { 1 }{ 4 } =\frac { 1 }{ y } $$ where $$y=\log _{ 10 }{ x } $$
    $$\Rightarrow y=-4$$ or $$y=1$$ $$\Rightarrow \log _{ 10 }{ x } =-4$$ or $$1$$
    $$\Rightarrow x={ 10 }^{ -4 }$$ or $$10$$
    $$\Rightarrow x=10\quad \left( \because x>1 \right) $$
  • Question 2
    1 / -0
    If $$A$$ and $$B$$ are coefficients of $${x}^{n}$$ in the expansions of $${ (1+x) }^{ 2n }$$ and $${ (1+x) }^{ 2n-1 }$$ respectively, then $$\dfrac AB$$ is equal to
    Solution
    We know that coefficient of $${x}^{r}$$ in the expansion of $${ (1+x) }^{ m }$$ is $${ _{  }^{ m }{ C } }_{ r }$$
    Thus $$A={ _{  }^{ 2n }{ C } }_{ n }\quad ;\quad B={ _{  }^{ 2n-1 }{ C } }_{ n }$$
    We have
    $$\cfrac { A }{ B } =\cfrac { { _{  }^{ 2n }{ C } }_{ n } }{ { _{  }^{ 2n-1 }{ C } }_{ n } } =\cfrac { (2n)! }{ n!n! } \cfrac { (n!)(n-1)! }{ (2n-1)! } =\cfrac { 2n }{ n } =2$$
  • Question 3
    1 / -0
    The expression $${ C }_{ 0 }+2{ C }_{ 1 }+3{ C }_{ 2 }+......+(n+1){ C }_{ n }$$ is equal to
    Solution
    Let $$E={ C }_{ 0 }+2{ C }_{ 1 }+3{ C }_{ 2 }+......n{ C }_{ n-1 }+(n+1){ C }_{ n }\quad ........(1)$$
    Using $${ C }_{ r }={ C }_{ n-r }\quad E=(n+1){ C }_{ 0 }+n{ C }_{ 1 }+(n-1){ C }_{ 2 }+.....+2{ C }_{ n-1 }+{ C }_{ n }\quad ........(2)$$
    Adding $$(1)$$ and $$(2)$$, we get
    $$2E=(n+2){ C }_{ 0 }+(n+2){ C }_{ 1 }+(n+2){ C }_{ 2 }+....+(n+2){ C }_{ n }$$
    $$=(n+2)\left\{ { C }_{ 0 }+{ C }_{ 1 }+.....+{ C }_{ n } \right\} =(n+2){ 2 }^{ n }$$
    $$\Rightarrow \quad E=(n+2){ 2 }^{ n-1 }$$
  • Question 4
    1 / -0
    The number of irrational terms in the expansion of $${ ({ 5 }^{\tfrac 16 }+{ 2 }^{ \tfrac 18 }) }^{ 100 }$$ is

    Solution
    $$(r+1)$$th in the expansion of $${ ({ 5 }^{\tfrac 16 }+{ 2 }^{\tfrac  18 }) }^{ 100 }$$ is
    $${ t }_{ r+1 }={ _{  }^{ 100 }{ C } }_{ r }{ ({ 5 }^{\tfrac 16 }) }^{ 100-r }{ ({ 2 }^{\tfrac 18 }) }^{ r }$$
    As $$5$$ and $$2$$ are relatively prime, $${t}_{r+1}$$ will be rational if $$\cfrac { 100-r }{ 6 } $$ and $$\cfrac { r }{ 8 } $$ are both integers. i.e., if $$100-r$$ is a multiple of $$6$$ and $$r$$ is a multiple of $$8$$. As $$0\le r \le 100$$, multiples of $$8$$ upto $$100$$ and corresponding value of $$100-r$$ are
    $$r=0,8,16,24,.....88,96$$
    $$100-r=100,92,84,76,....12,4$$
    Out of values of $$100-r$$, multiples of $$6$$ are $$84,60,36,12$$
    $$\therefore$$ there are just four rational terms.
    $$\Rightarrow$$ number of irrational terms is $$101-4=97$$
  • Question 5
    1 / -0
    If $$f(n)=\sum _{ k=1 }^{ n }{ \sum _{ j=k }^{ n }{ ({ _{  }^{ n }{ C } }_{ j } } ) } ({ _{  }^{ j }{ C } }_{ k })$$, find $$f(n)$$.
    Solution
    Simplifying the above expression we get 
    $$\:^{n}C_{1}(\:^{1}C_{1})+\:^{n}C_{2}(\:^{2}C_{1}+\:^{2}C_{2})+...+\:^{n}C_{n}(\:^{n}C_{1}+\:^{n}C_{2}+...\:^{n}C_{n})$$
    $$=(2^{1}-1)\:^{n}C_{1}+(2^{2}-1)\:^{n}C_{2}+...\:^{n}C_{n}(2^{n}-1)$$
    $$=2^{1}\:^{n}C_{1}+2^{2}\:^{n}C_{2}+...2^{n}\:^{n}C_{n}-[\:^{n}C_{1}+\:^{n}C_{2}+...\:^{n}C_{n}]$$
    $$=(1+2)^{n}-1-[2^{n}-1]$$
    $$=3^{n}-2^{n}$$.
  • Question 6
    1 / -0
    Value of $$S=1\times 2\times 3\times 4+2\times 3\times 4\times 5+.......+n(n-1)(n+2)(n+3)$$ is
    Solution

  • Question 7
    1 / -0
    If the third term in the expansion of
    $${ \left( \cfrac { 1 }{ x } +{ x }^{ \log _{ 2 }{ x }  } \right)  }^{ 5 }$$ is $$40$$ then $$x$$ equals
    Solution
    The middle term of $$\displaystyle { \left( \frac { 1 }{ x } +x\log _{ 2 }{ x }  \right)  }^{ 5 }$$ is $$\displaystyle ^{ 5 }{ { C }_{ 2 } }{ \left( \frac { 1 }{ x }  \right)  }^{ 3 }{ \left( { x }^{ \log _{ 2 }{ x }  } \right)  }^{ 2 }=10{ x }^{ 2\log _{ 2 }{ x-3 }  }=40$$
    $$\therefore{ x }^{2 \log _{ 2 }{ x-3 }  }=4={ 2 }^{ 2 }$$
    Taking logarithm to the base $$2$$ of both the sides, we get $$(2t-3)t=2$$ where $$t=\log _{ 2 }{ x } $$
    $$\Rightarrow 2{ t }^{ 2 }-3t-2=0$$ or $$\left( 2t+1 \right) \left( t-2 \right) =0$$
    $$\displaystyle \Rightarrow t=-\frac { 1 }{ 2 } , 2\Rightarrow x=\frac { 1 }{ \sqrt { 2 } },4 $$
  • Question 8
    1 / -0
    If the coefficients of 2nd, 3rd and the 4th terms in the expansion of $${ \left( 1+x \right)  }^{ n }$$ are in A.P, then value of $$n$$ is
    Solution
    For the terms to be in A.P, it must follow
    $$(n-2r)^{2}=n+2$$
    In the above case $$r=2$$
    Substituting in the equation, we get
    $$(n-4)^{2}=n+2$$
    $$n^{2}-8n+16=n+2$$
    $$n^{2}-9n+14=0$$
    $$(n-2)(n-7)=0$$
    $$n=2$$ and $$n=7$$
    However for $$n=2$$ we will have only $$3$$ terms.
    Hence the required answer is $$7.$$
  • Question 9
    1 / -0
    If the third term in the expansion $${ \left( x+{ x }^{ \log _{ 5 }{ x }  } \right)  }^{ 5 }$$ is $$2$$, then $$x$$ equals
    Solution
    $$T_{2+1}$$
    $$=\:^{5}C_{2}x^{3+2log_{5}(x)}$$
    $$=10x^{3+2log_{5}(x)}$$
    $$=2$$
    $$x^{3+2log_{5}(x)}=\dfrac{1}{5}$$
    $$log_{5}(x)(3+2log_{5}(x))=-1$$
    $$2log(x)^{2}+3log(x)+1=0$$
    $$2log(x)^{2}+2log(x)+log(x)+1=0$$
    $$(2log(x)+1)(log(x)+1)=0$$
    $$log(x)=-1$$
    $$x=\dfrac{1}{5}$$ and $$log(x)=\dfrac{-1}{2}$$
    $$x=\dfrac{1}{\sqrt{5}}$$
  • Question 10
    1 / -0
    Value of
    $$\sum _{ k=1 }^{ \infty  } \sum _{ r=0 }^{ k }{ \cfrac { 1 }{ { 3 }^{ k } }  } ({ _{  }^{ k }{ C } }_{ r })$$ is
    Solution
    $$\sum \dfrac{1}{3^{k}}\:^{k}C_{r}$$
    $$=\dfrac{1}{3^{k}}\sum\:^{k}C_{r}$$
    $$=\dfrac{2^{k}}{3^{k}}$$
    This is a G.P
    Therefore, the sum of the series will be
    $$S=\dfrac{\frac{2}{3}}{1-\frac{2}{3}}$$ $$=2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now