Self Studies

Binomial Theorem Test - 31

Result Self Studies

Binomial Theorem Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle \left ( 1+x+x^{2} \right )^{25}=a_{0}+a_{1}x+a_{2}x^{2}+\cdot \cdot \cdot +a_{50}\cdot x^{50}$$ then $$\displaystyle a_{0}+a_{2}+a_{4}+\cdot \cdot \cdot +a_{50}$$ is
    Solution
    $$(1+x+x^{2})^{25}=a_{0}+a_{1}x+a_{2}x^{2}+...a_{50}x^{50}$$

    Substituting $$x=1$$, we get 

    $$3^{25}=a_{0}+a_{1}+a_{2}+...a_{50}$$ ...(i)

    Substituting $$x=-1$$ we get 

    $$1=a_{0}-a_{1}+a_{2}-a_{3}...+a_{50}$$ ...(ii)

    Adding $$i$$ and $$ii$$, we get 

    $$3^{25}+1=2[a_{0}+a_{2}+a_{4}+...a_{50}]$$

    Hence

    $$a_{0}+a_{2}+a_{4}+...a_{50}=\dfrac{3^{25}+1}{2}$$

    Since the LHS is a positive integer hence the RHS has to be a positive integer.
    Therefore

    $$3^{25}+1$$ will be divisible by $$2$$.

    Hence 

    $$3^{25}+1$$ will be even.

    And 

    $$3^{2n+1}+1$$ is always even and is divisible by $$4$$.

    Hence

    $$\dfrac{3^{25}+1}{2}$$ will be even.
  • Question 2
    1 / -0
    If the expansion of $${ \left( 1+x \right)  }^{ 50 }$$, the sum of coefficients of add powers of $$x$$ is
    Solution
    The sum of coefficients of odd powers of $$x$$
    $$=_{  }^{ 50 }{ { C }_{ 1 }^{  } }+^{ 50 }{ { C }_{ 3 }^{  } }+...+^{ 50 }{ { C }_{ 49 }^{  } }={ 2 }^{ 50-1 }={ 2 }^{ 49 }$$.
  • Question 3
    1 / -0
    If $$\displaystyle \begin{pmatrix} p   \\ q  \end{pmatrix}$$ =0 for $$\displaystyle p< q$$ p,$$\displaystyle q\epsilon W$$ then $$\displaystyle \sum_{r=0}^{\infty}$$ $$\displaystyle \begin{pmatrix} n \\ 2r \end{pmatrix}$$
    Solution
    $$\sum \:^{n}C_{2r}$$
    Is the sum of even odd term in the binomial expansion of $$(1+x)^{n}$$
    Hence
    $$\sum \:^{n}C_{2r}$$ will always be equal to $$2^{n-1}$$.
  • Question 4
    1 / -0
    The coefficients of three consecutive terms in the expansion of $${ (1+x) }^{ n }$$ are in the ratio $$5:10:21$$. find $$n$$
  • Question 5
    1 / -0
    The sum of the coefficients of all the even powers of x in the expansion of $$\displaystyle \left ( 2x^{2}-3x+1 \right )^{11}$$ is
    Solution
    Given equation is $$(2x^{2}-3x+1)^{11}$$
    $$=(2x-1)^{11}(x-1)^{11}$$
    $$=(3)^{11}.(2)^{11-1}$$
    $$=3^{11}.2^{10}$$
    $$=6^{10}.3$$
  • Question 6
    1 / -0
    Number of rational terms in the expansion of $$\displaystyle \left ( \sqrt{2}+\sqrt[4]{3} \right )^{100}$$ is
    Solution
    The general term for the following expression is 

    $$T_{r+1}=\:^{100}C_{r}2^{50-\tfrac{r}{2}}.3^{\tfrac{r}{4}}$$.

    Hence we get rational terms for 

    $$r=0,4,8,12....100$$

    $$a_{n}=a+(n-1).d$$

    $$100=0+(n-1).4$$

    $$25=n-1$$

    $$n=26$$
  • Question 7
    1 / -0
    If the coefficients of $$\displaystyle x^{7}$$ & $$\displaystyle x^{8}$$ in the expansion of $$\displaystyle \left [ 2+\frac{x}{3} \right ]^{n}$$ are equal then the value of n is 
    Solution
    Hence

    $$T_{8}=T_{9}$$

    $$\:^{n}C_{8}2^{n-8}3^{-8}=\:^{n}C_{7}2^{n-7}3^{-7}$$

    $$\:^{n}C_{8}=6\:^{n}C_{7}.$$

    $$\dfrac{n!}{(n-8)!.8!}=6.\dfrac{n!}{(n-7)!.7!}$$

    $$n-7=6.8$$

    $$n-7=48$$

    $$n=55$$.
  • Question 8
    1 / -0
    The sum of the binomial coefficients of $$\displaystyle \left [2 x+\frac{1}{x} \right ]^{n}$$ is equal to  243. value of n is
    Solution
    Substituting $$x=1$$ for sum of coefficients, we get 
    $$3^{n}=243$$
    $$3^{n}=3^{5}$$
    Hence 
    $$n=5$$


  • Question 9
    1 / -0
    Find the $$\displaystyle 7^{th}$$ term of $$\displaystyle \left ( 3x^{2}-\frac{1}{3}\right)^{10}$$.
    Solution
    Writing the general term, we get 
    $$T_{r+1}=(-1)^{r}\:^{10}C_{r}3^{10-2r}.x^{20-2r}$$
    For 7th term r is equal to 6.
    Hence
     $$T_{7}=(-1)^{6}\:^{10}C_{6}3^{10-12}.x^{20-12}$$

    $$=\dfrac{210.x^{8}}{9}$$

    $$=\dfrac{70x^{8}}{3}$$.
  • Question 10
    1 / -0

    Directions For Questions

    If $$n$$ is positive integer and if $$\displaystyle \left ( 1+4x+4x^{2} \right )^{n}=\sum_{r=0}^{2n}a_{r}x^{r}$$ where $$\displaystyle a_{i}'s$$ are $$(i = 0, 1, 2, 3, ....., 2n)$$ real numbers

    ...view full instructions

    The value of $$\displaystyle 2\sum_{r=0}^{n}a_{2r-1}$$ is
    Solution
    $$(1+4x+4x^{2})^{n}=a_{0}+a_{1}x+a_{2}x^{2}+...(a_{2n}x^{2n})$$
    Substituting $$x=1$$ we get 
    $$9^{n}=a_{0}+a_{1}+a_{2}+...(a_{2n})$$
    Substituting $$x=-1$$ we get 
    $$1=a_{0}-a_{1}+a_{2}-a_{3}...(a_{2n})$$
    Adding both we get 
    $$2(a_{0}+a_{2}+a_{4}+...a_{2n})=9^{n}+1$$
    Hence
    $$2\sum _{k=0} ^{n}a_{2k}=9^{n}+1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now