Self Studies

Binomial Theorem Test - 33

Result Self Studies

Binomial Theorem Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The number of terms in the expansion of $$( 1 + 5\sqrt 2 x)^9 + ( 1 -5\sqrt 2 x)^9$$ is
    Solution
    $$S=(1+5\sqrt{2}x)^{9}+(1-5\sqrt{2}x)^{9}$$
    Let $$k=5\sqrt{2}$$
    Then the above binomial expansion changes to
    $$S=(1+k)^{9}+(1-k)^{9}$$

    $$=[1+\:^{9}C_{1}k+\:^{9}C_{2}k^{2}+...\:^{9}C_{9}k^{9}]+[1-\:^{9}C_{1}k+\:^{9}C_{2}k^{2}-\:^{9}C_{3}k^{3}...-\:^{9}C_{9}k^{9}]$$

    $$=2[1+\:^{9}C_{2}k^{2}+\:^{9}C_{4}k^{4}+\:^{9}C_{6}k^{6}+\:^{9}C_{8}k^{8}]$$
    Hence in total 5 terms will be there.
  • Question 2
    1 / -0
    The sum of all the coefficients in the binomial expansion of $$(x^2 + x^3)^{319}$$ is
    Solution
    For the sum of the coefficients of the binomial theorem, we substitute $$x=1$$.
    Hence, we get 
    $$(x^{2}+x^{3})^{319}|_{x=1}$$

    $$=2^{319}$$
    Thus sum of the coefficients of the above binomial expansion is $$2^{319}$$.
  • Question 3
    1 / -0
    Which term in the expansion of $$\left (\displaystyle \frac {x}{3}-\frac {2}{x^2}\right )^{10}$$ contains $$x^4$$?
    Solution
    The general term is as follows
    $$T_{r+1}$$ $$=(-1)^{r}\:^{10}C_{r}x^{10-3r}3^{10-r}2^{r}$$
    Hence, for the coefficient of $$x^{4}$$ 
    $$10-3r=4$$
    $$3r=6$$
    $$r=2$$.
    So, $$r+1=3$$rd term
  • Question 4
    1 / -0
    If $$C_0 , C_1 , C_2 .... C_n$$ denote the binomial coefficients in the expansion of $$(1 + x)^n$$ , then the value of $$\displaystyle \sum_{r=0}^n(r+1)C_r$$ is
    Solution
    $$\sum(r+1)C_{r}$$
    $$=\sum(r)C_{r}+\sum C_{r}$$
    $$=\dfrac{d(1+x)^{n}}{dx}_{x=1}+2^{n}$$
    $$=n(2)^{n-1}+2^{n}$$
    $$=2^{n-1}(n+2)$$
  • Question 5
    1 / -0
    If $$C_0, C_1, C_2, ..............C_n$$ are binomial coefficients then $$\displaystyle \frac {1}{n!0!}+\frac {1}{(n-1)!1!}+\frac {1}{(n-2)!2!}+ ....+\frac {1}{0!n!}$$ is equal to
    Solution
    Multiplying and dividing the entire expression by n!, we get 
    $$\dfrac{1}{n!}[\dfrac{n!}{0!.n!}+\dfrac{n!}{(n-1)!.1!}+\dfrac{n!}{(n-2)!.2!}+...\dfrac{n!}{0!.n!}]$$

    $$=\dfrac{1}{n!}[\:^{n}C_{0}+\:^{n}C_{1}+\:^{n}C_{2}+...\:^{n}C_{n}]$$

    $$=\dfrac{1}{n!}(1+x)^{n}_{x=1}$$

    $$=\dfrac{2^{n}}{n!}$$.
  • Question 6
    1 / -0
    If $$(1+x-2x^2)^8= a_0 + a_1x + a_2x^2 +....+ a_{16}x^{16}$$ then the sum $$a_1+a_3+a_5+ .... +a_{15}$$ is equal to
    Solution
    Substituting x=1, we get 
    $$0=a_{0}+a_{1}+a_{2}+...a_{16}$$
    Substituting x=-1 we get 
    $$2^{8}=a_{0}-a_{1}+a_{2}+...-a_{15}+a_{16}$$
    Subtracting ii from i, we get 
    $$-2^{8}=2[a_{1}+a_{3}+a_{5}+a_{7}+...a_{15}]$$
    Or 
    $$a_{1}+a_{3}+a_{5}+a_{7}+...a_{15}=-2^{7}$$
  • Question 7
    1 / -0
    The number of terms which are free from radical signs in the expansion of $$(y^{\frac 15} + x^{\frac 1{10}})^{55}$$ are
    Solution
    In the expansion of $$(y^{1/5} + x^{1/10})^{55}$$,the general term is
    $$T_{r+1} = ^{55}C_r (y^{1/5})^{55-r} (x^{1/10})^r = ^{55}C_r.y^{11-r/5}x^{r/10}$$
    This $$T_{r+1}$$ will be independent of radicals if the exponents r/5 and r/10 are integers, for $$0\leq r \leq 55$$ which is possible only when $$r = 0, 10, 20, 30, 40, 50$$.
    $$\therefore$$ There are six terms viz. $$T_1,T_{11},T_{21},T_{31},T_{41},T_{51}$$, which are independent of radicals.
  • Question 8
    1 / -0
    If the sum of the coefficients in the expansion of $$(1 -3x + 10x^2)^n$$ is $$a$$ and if the sum of the coefficients in the expansion of $$(1 + x^2)^n$$ is $$b$$, then
    Solution
    Given , 
    $$a =$$ sum of the coefficient in the expansion of $$(1 - 3x + 10x^2)^n$$
    $$\Rightarrow a = (1 - 3 + 10)^n = (8)^n$$   (Putting $$x = 1$$)
    $$\Rightarrow a = (2)^{3n}$$  
    Now, $$b =$$ sum of the coefficients in the expansion of $$(1 + x^2)^n$$
    $$\Rightarrow b = (1 + 1)^n = 2^n$$     (Putting $$x = 1$$)
    Clearly, $$a = b^3$$
  • Question 9
    1 / -0
    $$\binom{n}{0}+2\binom{n}{1}+2^2\binom{n}{2}+ .... +2^n\binom{n}{n}$$ is equal to
    Solution
    Given, $$\binom{n}{0}+2\binom{n}{1}+2^2\binom{n}{2}+ .... +2^n\binom{n}{n}$$
    Simplifying the above expression we get 
    $$=\:^{n}C_{0}2^{0}+\:^{n}C_{1}2^{1}+\:^{n}C_{2}2^{2}+...\:^{n}C_{n}2^{n}$$
    Consider $$x=2$$ in the expansion of $$(1+x)^{n}$$.
    $$=(1+2)^{n}$$
    $$=3^{n}$$.
  • Question 10
    1 / -0
    If $$(2x+3x^2)^6 = a_0 + a_1x + a_2x^2+.....+ a_{12} x^{12}$$, then values of $$a_0$$ and $$a_6$$ are
    Solution
    Writing the general term we get 

    $$T_{r+1}$$
    $$=\:^{6}C_{r}x^{6+r}2^{6-r}.3^{r}$$

    Hence coefficient of $$x^{0}$$ is 0.

    Thus $$a_{0}=0$$.
    For $$a_{6}$$ r=0.

    Hence

    $$\:^{6}C_{0}.2^{6}.3^{0}$$
    $$=2^{6}$$.

    Hence

    $$a_{6}=2^{6}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now