Self Studies

Binomial Theorem Test - 34

Result Self Studies

Binomial Theorem Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If sum of all the coefficients in the expansion of $$(x^{3/2} + x^{1/3})^n$$ is 128, then the coefficient of $$x^5$$ is
    Solution
    Substituting $$x=1$$, we get the sum of the coefficients as 
    $$(2)^{n}=128$$
    $$\therefore n=7$$
    Hence writing the general term, we get 
    $$T_{r+1}=\:^{7}C_{r}x^{\frac{63-11r}{6}}$$
    Hence for the coefficient of $$x^{5}$$
    $$63-11r=6(5)$$
    $$63-11r=30$$
    $$33-11r=0$$
    $$\therefore r=3$$
    Hence coefficient is $$\:^{7}C_{3}$$ $$=35$$.
  • Question 2
    1 / -0
    The sum of the coefficients in the expansion of $$(x + 2y + z)^{10}$$ is
    Solution
    Given expression is $$(x+2y+z)^{10}$$
    Substituting $$x=y=z=1$$, we get the sum of the coefficients as
    $$(1+2+1)^{10}$$
    $$=4^{10}$$
  • Question 3
    1 / -0
    In the expansion of $$\displaystyle \left [ 7^{1/3}+11^{1/9} \right ]^{6561}$$, the number of terms free from radicals is
    Solution
    The general term of a binomial expansion is $$ { T }_{ r+1 }={ _{  }^{ n }{ C } }_{ r }{ x }^{ n-r }{ a }^{ r }$$

    From the above question $${ T }_{ r+1 }={ _{ }^{ 6561 }{ C } }_{ r }{ \left( { 7 }^{ \cfrac { 1 }{ 3 } } \right) }^{ 6561-r }\times { \left( { 11 }^{ \frac { 1 }{ 9 } } \right) }^{ r }={ _{ }^{ 6561 }{ C } }_{ r }{ 7 }^{ \frac { 6561 }{ 3 } -\frac { r }{ 3 } }{ 11 }^{ \frac { r }{ 9 } }.$$

    Number of terms free from radicals are those which makes the general term an integer

    $${ T }_{ r+1 }$$ will be integer when $$ \dfrac { 6561-r }{ 3 } $$ and $$ \dfrac { r }{ 9 } $$ are positive integers for $$0\le r\le 6561$$.

    Take $$ r=0,{ \dfrac { 6561-0 }{ 3 } =2187 ,\dfrac { 6561 }{ 9 } =729 }$$ is an integer.

    For $$r=9$$, $$ { T }_{ r+1 }$$ is an integer

    Thus, $$r=0,9,18,27,..6561$$ are the multiples of $$9$$, which makes $$ { T }_{ r+1 }$$ is an integer.

    Hence,$$\dfrac { 6561 }{ 9 } =729$$ There are $$729$$ terms excluding $$0$$

    $$\therefore$$ Number of terms with free radicals$$=729+1=730$$ terms (including the term 0)
  • Question 4
    1 / -0
    In the expression of $$\displaystyle \left ( 3-\sqrt{\frac{17}{4}+3\sqrt{2}} \right )^{15}$$, the 11th term is a
    Solution
    General term$$={ T }_{ r+1 }={ _{  }^{ n }{ C } }_{ r }{ x }^{ n-r }{ a }^{ r }$$ where $$ n=15$$,$$ x=3$$ 
    $$a=\sqrt { \frac { 17 }{ 4 } +3\sqrt { 2 }  } \\ { T }_{ 11 }={ T }_{ 10+1 }={ _{  }^{ 15 }{ C } }_{ 10 }{ (3) }^{ 15-10 }{ \left( \frac { 17 }{ 4 } +3\sqrt { 2 }  \right)  }^{ \frac { 1 }{ 2 } \times 10 }\\ ={ _{  }^{ 15 }{ C } }_{ 10 }{ 3 }^{ 5 }\left( \frac { 17 }{ 4 } +3\sqrt { 2 }  \right) ^{ 5 }$$
     Note:$${ (3\sqrt { 2 } ) }^{ 5 }=972\sqrt { 2 } $$ is an irrational number.
    Sum of a rational number and an irrational number is irrational number.
    Hence,11th term is a positive irrational number.


  • Question 5
    1 / -0
    The total number of distinct terms in the expansion of $$\displaystyle \left ( x+a \right )^{100}+\left ( x-a \right )^{100}$$ after simplification is
    Solution
    Number of terms in a binomial expansion is$$=(n+1)$$
    When n is even,in the expansion$$ { (x+a) }^{ n }+{ (x-a) }^{ n }=2\left\{ { _{  }^{ n }{ C } }_{ 0 }{ x }^{ n }+{ _{  }^{ n }{ C } }_{ 2 }{ x }^{ n-2 }{ a }^{ 2 }+...+{ a }^{ n } \right\}$$
    Thus,the odd number of terms get cancelled and even number of terms get added except the first term.
    Therefore,total number of terms is=$$\left( \frac { n }{ 2 } +1 \right)$$terms

     Hence,$${ (x+a) }^{ 100 }+{ (x-a) }^{ 100 }$$ has 

    $$\left( \frac { 100 }{ 2 } +1 \right) terms=51$$ terms therefore Number of terms$$=51$$terms

  • Question 6
    1 / -0
    If $$p+q=1$$, then the value of $$\displaystyle \sum _{ r=0 }^{ 15 }{ { _{  }^{ 15 }{ C } }_{ r } } { p }^{ 15-r }{ q }^{ r }$$
    Solution
    It is given that $$p+q=1$$
    Therefore $$q=1-p$$
    Hence $$\sum_{r=0} ^{15} \:^{15}C_{r}p^{15-r}q^{r}$$
    $$\quad =(p+q)^{15}$$
    Now $$q=1-p$$
    Hence $$(p+q)^{15}$$
    $$=(p+1-p)^{15}$$
    $$=1$$.
  • Question 7
    1 / -0
    The value of $$ \sum _{ r=1 }^{ 10 }{ { r }^{ 2 }.\cfrac { { _{  }^{ 26 }{ C } }_{ r } }{ { _{  }^{ 26 }{ C } }_{ r-1 } }  } $$ is-
    Solution
    $$\sum _{ r=1 }^{ 10 }{ { r }^{ 2 } } .\left( \cfrac { 27-r }{ r }  \right) =\sum _{ r=1 }^{ 10 }{ \left( 27r-{ r }^{ 2 } \right)  } $$

    $$=\cfrac { 27r(r+1) }{ 2 } -\cfrac { r(r+1).(2r+1) }{ 6 } $$

    put $$r=10$$

    $$=27.5.11-5.11.7=1100$$
  • Question 8
    1 / -0
    If $${ \left( { x }^{ 2 }+\cfrac { 1 }{ { x }}  \right)  }^{ n }$$ has exactly one middle term which is equal to $$\alpha.{x}^{3}$$ then the value of $$(\alpha+n)$$ is-         ($$n\in N$$)
    Solution
    $$\because$$ Only one middle term $$\Rightarrow$$ $$n$$ is even middle term $$=\alpha.{x}^{3}$$
    $${ _{  }^{ n }{ C } }_{ n/2 }{ \left( { x }^{ 2 } \right)  }^{ n/2 }.{ \left( \cfrac { 1 }{ x }  \right)  }^{ n/2 }=\alpha .{ x }^{ 3 }$$
    $${ _{  }^{ n }{ C } }_{ n/2 }x^{n/2}=\alpha .{ x }^{ 3 }\Rightarrow \cfrac { n }{ 2 } =3$$
    and $$\alpha ={ _{  }^{ n }{ C } }_{ n/2 }$$
    $$\Rightarrow$$ $$n=6$$ and $$\alpha={ _{  }^{ 6 }{ C } }_{ 3 }=20$$
    $$\therefore \alpha +n=20+6=26$$
  • Question 9
    1 / -0
    If the second term of the expansion $$\displaystyle \left [ a^{1/13}+\frac{a}{\sqrt{a^{-1}}} \right ]^{n}\: \: is\: \: 14a^{5/2}$$, then the value of $$\displaystyle \frac{^{n}{C}_{3}}{^{n}{C}_{2}}$$ is
    Solution
    Using the formula $${ T }_{ r+1= }{ _{  }^{ n }{ C } }_{ r }{ { x }^{ n-r }{ a }^{ r } }$$
    in the above question,we have $${ T }_{ 2 }={ _{  }^{ n }{ C } }_{ 1 }{ \left( { a }^{ \frac { 1 }{ 13 }  } \right)  }^{ n-1 }(a\sqrt { a } )=14{ a }^{ \frac { 5 }{ 2 }  }$$

     $$\Rightarrow { T }_{ 2 }={ _{  }^{ n }{ C } }_{ 1 }{ a }^{ \tfrac { n-1 }{ 13 }  }{ a }^{ 1+\frac { 1 }{ 2 }  }=14{ a }^{ \tfrac { 5 }{ 2 }  }$$

    $$\Rightarrow { _{  }^{ n }{ C } }_{ 1 }{ a }^{ \frac { n-1 }{ 13 } +\frac { 3 }{ 2 }  }=14{ a }^{ \frac { 5 }{ 2 }  }$$

    Comparing L.H.S and R.H.S,

    $$\Rightarrow { a }^{ \tfrac { 2n+37 }{ 26 }  }={ a }^{ \tfrac { 5 }{ 2 }  }$$

    Since bases are same,we can equate the powers

    Thus, $$\cfrac { 2n+37 }{ 26 } =\cfrac { 5 }{ 2 } $$

    On solving , $$2(2n+37)=5\times 26\Rightarrow 2n+37=65$$

    $$\therefore 2n=65-37=28$$

    Hence, $$ n=\cfrac { 28 }{ 2 } =14$$

    Using the  formula,  $$\cfrac { { _{  }^{ n }{ C } }_{ r } }{ { _{  }^{ n }{ C } }_{ r-1 } } =\cfrac { n-r+1 }{ r }$$ where $$r=3$$ and $$n=14$$

    $$\cfrac { { _{  }^{ n }{ C } }_{ 3 } }{ { _{  }^{ n }{ C } }_{ 2 } } =\cfrac { 14-3+1 }{ 3 } =\cfrac { 12 }{ 3 } =4$$

  • Question 10
    1 / -0
    The value of the expression $$\displaystyle \left ( \sum_{r=0}^{10} \ ^{10}C_{r} \right )\left ( \sum_{k=0}^{10}\left ( -1 \right )^{k}\dfrac{^{10}\textrm{C}_{k}}{2^{k}} \right )$$ is:
    Solution
    Given 
    $$\left ( \sum_{r=0}^{10} \displaystyle^{10}C_{r} \right ) \left ( (-1)^k \dfrac{\sum_{k=0}^{10} \displaystyle^{10}C_{k}}{2^k} \right )$$
    We konw that 
    $$(1+x)^n=C_{0}+C_{1}x+C_{2}x^2+..............+C_{n}x^n------(1)$$

    When putting $$x=1$$ we get 
    $$2^n=C_{0}+C_{1}+C_{2}+..............+C_{n}$$

    Replace x with $$\dfrac{-1}{x}$$ in eq (1) we get 

    $$\left(1-\dfrac{1}{x}\right)^n=C_{0}-C_{1}\dfrac{1}{x}+\dfrac{C_{2}}{x^2}-\dfrac{C_{3}}{x^3}+..............+(-1)^n\dfrac{ C_{n}}{x^n}$$

    Putting $$x=2$$ in above we get 
    $$\left(\dfrac{2-1}{2}\right)^n=C_{0}-C_{1}\dfrac{1}{2}+\dfrac{C_{2}}{2^2}-\dfrac{C_{3}}{2^3}+..............+(-1)^n\dfrac{ C_{n}}{2^n}$$

    $$\dfrac{1}{2^n}=C_{0}-C_{1}\dfrac{1}{2}+\dfrac{C_{2}}{2^2}-\dfrac{C_{3}}{2^3}+..............+(-1)^n\dfrac{ C_{n}}{2^n}$$

    Hence

    $$\left ( \sum_{r=0}^{10} \displaystyle^{10}C_{r} \right ) \left ( (-1)^k \dfrac{\sum_{k=0}^{10} \displaystyle^{10}C_{k}}{2^k} \right )=2^{10} \left ( \dfrac{1}{2^{10}} \right )=1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now