Self Studies

Binomial Theorem Test - 35

Result Self Studies

Binomial Theorem Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The number of real negative terms in the bionomial expansion of $$ (1+ix)^{4n-2} ,n \in N,x>0 $$ is
    Solution
    $${ \left( 1+ix \right)  }^{ 4x-2 }=\sum _{ r=0 }^{ ^{ 4x-2 } }{ ^{ ^{ 4x-2 } }{ { C }_{ r } } } { \left( ix \right)  }^{ r }$$
    For real negative terms, we have to get $$i^2;$$ Since $$(i^2=-1).$$ For that, $$r$$ must be equal to $$4k-2,$$ where $$k\in I$$
    Hence, the total real negative terms in the expansion$$ =n$$
    $$p.s.$$     $$i=\sqrt { -1 } $$
    $$\Rightarrow$$       $$i^2=-1$$
    $$\Rightarrow$$       $$i^3=-\sqrt { -1 } =-i$$
    $$\Rightarrow$$       $$i^4={ \left( { i }^{ 2 } \right)  }^{ 2 }=(-1)^2=1$$
    Hence, the answer is $$n.$$
  • Question 2
    1 / -0
    Find $$7^{th}$$ term of $$\displaystyle \left ( \frac{4x}{5}-\frac{5}{2x} \right )^{9}$$
    Solution
    $$7^{th}$$ term of $$\displaystyle \left ( \frac{4x}{5}-\frac{5}{2x} \right )^{9}$$
    $$\displaystyle T_{6+1}=^{9}\textrm{C}_{6}\left ( \frac{4x}{5} \right )^{9-6}\left ( -\frac{5}{2x} \right )^{6}$$
       $$\displaystyle =\frac{9!}{3!6!}\left ( \frac{4x}{5} \right )^{3}\left ( \frac{5}{2x} \right )^{6}=\frac{10500}{x^{3}}$$
  • Question 3
    1 / -0
    Find $$28^{th}$$ term of $$\left ( 5x+8y \right )^{30}$$
    Solution
    $$\displaystyle T_{27+1}=^{30}\textrm{C}_{27}\left ( 5x \right )^{30-27}\left ( 8y \right )^{27}=\frac{30!}{3!27!}\left ( 5x \right )^{3}.\left ( 8y \right )^{27}$$
  • Question 4
    1 / -0
    The number of integral terms in $${(\sqrt {3}+\sqrt [ 8 ]{ 2 } )}^{64}$$ is-
    Solution
    The general term of expansion $$(x+y)^{n}$$ is $${ ^{ n }{ C } }_{ r }{ x }^{ n-r }{ y }^{ r }$$
    So the general term of $${ (\sqrt { 3 } +\sqrt [ 8 ]{ 2 } ) }^{ 64 }$$ is $${ ^{ 64 }{ C } }_{ r }{ 3 }^{ \frac { 64-r }{ 2 }  }{ 2 }^{ \frac { r }{ 8 }  }$$
    For the term to be integer , $$r$$ must be divided by $$8$$ and $$64-r$$ must be divided by $$2$$
    The possible values of $$r$$ are $$0,8,16,24,32,40,48,56,64$$
    the number of integral values is $$9$$
  • Question 5
    1 / -0
    Value of $$\displaystyle \sum_{k=1}^{\infty} \sum _{r=0}^{k} \frac{1}{3^{k}} (^{k}C_{r})$$ is
    Solution
    $$\sum _{ r=0 }^{ k }{ \dfrac { 1 }{ { 3 }^{ k } }  } \left( { ^{ k }{ C } }_{ r } \right) $$
    $$\Rightarrow \dfrac { 1 }{ { 3 }^{ k } } \sum _{ r=0 }^{ k }{ \left( { ^{ k }{ C } }_{ r } \right)  } =\dfrac { 1 }{ { 3 }^{ k } }.2^k$$
    $$={ \left( \dfrac { 2 }{ 3 }  \right)  }^{ k }$$
    $$\sum _{ k=1 }^{ \infty  }{ { \left( \dfrac { 2 }{ 3 }  \right)  }^{ k } } $$
    $$=\dfrac{2}{3}+{ \left( \dfrac { 2 }{ 3 }  \right)  }^{ 2 }+{ \left( \dfrac { 2 }{ 3 }  \right)  }^{ 3 }........$$
    Sum of an infinite GP
    $$\Rightarrow S=\sum _{ k=1 }^{ \infty  }{ { \left( \dfrac { 2 }{ 3 }  \right)  }^{ k } } =\dfrac { \dfrac { 2 }{ 3 }  }{ 1-\dfrac { 2 }{ 3 }  }=2 $$
    Hence, the answer is $$2.$$
  • Question 6
    1 / -0
    If the sum of the coefficients in the expansion $$(1-3x+10x^{2} )^{n} $$ is $$a$$ and sum of coefficients in the expansion of $$ (1+x^{2})^{n}$$is b,then
    Solution
    $${ \left( 1-3x+10{ x }^{ 2 } \right)  }^{ n }=\sum { \dfrac { (n)! }{ ({ r }_{ 1 })!({ r }_{ 2 })!({ r }_{ 3 })! }  } \left\{ { (1) }^{ { r }_{ 1 } }.({ -3x) }^{ { r }_{ 2 } }.({ 10x) }^{ { r }_{ 3 } } \right\} $$
    We can get the sum of the coefficient by taking $$x=1$$
    Hence, $$a={(1-3+10)}^n=8^n=2^{3n}$$
    Similarly $${(1+x^2)}^n=\sum _{ r=0 }^{ n }{ ^{ n }{ { C }_{ r } } } ({ x }^{ 2 }{ ) }^{ r }$$
    Taking $$x=1;$$       $$b=2^n$$
    Hence, $$a=b^3$$
    Hence, the answer is $$a=b^3.$$
  • Question 7
    1 / -0
    Which term is the constant term in the expansion of $$\left ( 2x\, -\, \frac{7}{3x} \right )^6$$ ?
    Solution

  • Question 8
    1 / -0
    The tenth term in the expansion of $$\left (2x^2 + \dfrac{1}{x}\right )^{12}$$ is:
    Solution
    Given 
    $$\left ( 2x^2+\dfrac{1}{x} \right )^{12}$$
    General term of given expansion is 
    $$T_{r+1}=\sum_{r=0}^{12}\displaystyle^{12}C_{r}(2x^2)^{12-r}\left( \dfrac{1}{x} \right )^{r} $$
    We need $$10^{th}$$ term hence put $$r=9$$
    $$T_{9+1}=\displaystyle^{12}C_{9}(2x^2)^{12-9}\left( \dfrac{1}{x} \right )^{9} $$

    $$T_{10}=\displaystyle^{12}C_{9}(2x^2)^{3}\left( \dfrac{1}{x} \right )^{9} $$

    $$T_{10}=\displaystyle^{12}C_{9}\cdot 2^3 (x)^{6-9} $$

    $$T_{10}=\dfrac{12!}{9!3!}\cdot 8 (x)^{-3} $$

    $$T_{10}=\dfrac{12\times 11 \times 10 }{3\times 2\times x^3}\cdot 8  $$

    $$T_{10}=\dfrac{1760}{x^3} $$
  • Question 9
    1 / -0
    The $$7^{th}$$ term from the end in the expansion of $$\left (x-\dfrac {2}{x^2}\right )^{10}$$ is equal to:
    Solution
    Given 
    $$\left ( x-\dfrac{2}{x^2} \right )^{10}$$
    General term of given expansion is 
    $$T_{r+1}=\sum_{r=0}^{10}\displaystyle^{10}C_{r}(x)^{10-r}\left( \dfrac{2}{x^2} \right )^{r} (-1)^r$$
    We know that 
    The $$r^{th}$$ term from end is equal to $$(n-r+2)^{th}$$ term from begining 
    Hence 
    We need $$7^{th}$$ term from end i.e $$(10-7+2)^{th}=5^{th}$$ term from end So put $$r=4$$
    $$T_{4+1}=\displaystyle^{10}C_{4}(x)^{10-4}\left( \dfrac{2}{x^2} \right )^{4} (-1)^4$$

    $$T_{5}=\displaystyle^{10}C_{4}(x)^{6}\left( \dfrac{2^4}{x^8} \right ) $$

    $$T_{5}=\displaystyle^{10}C_{4}\cdot 2^4 \left(\dfrac{1}{x^2}\right) $$

  • Question 10
    1 / -0
    If the middle term in the expansion of $$\left (x^2+\dfrac {1}{x}\right )^n$$ is $$924x^6$$, then $$n=$$
    Solution
    For $$ \left ( x^{2}+\dfrac{1}{x} \right )^{n} $$ have middle term.
    n is even 
    $$ \Rightarrow n = 2a; aEN $$ 
    middle term $$ ^{2a}C_{a} (x^{2})^{a}.\dfrac{1}{x^{a}} = ^{2a}C_{a}.x^{a} $$
    $$ = 924x^{6} $$
    $$ \Rightarrow a = 6 $$
    Also for $$ a = 6, ^{2a}C_{a} = ^{12}C_{6} = 924 $$
    So, $$ n = 2a = 12 $$ 

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now