Self Studies

Binomial Theorem Test - 36

Result Self Studies

Binomial Theorem Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$9^{th}$$ term in the expansion of $$\left (\dfrac {x}{a}-\dfrac {3a}{x^2}\right )^{12}$$ is:
    Solution
    Given 
    $$\left ( \dfrac{x}{a}-\dfrac{3a}{x^2} \right )^{12}$$
    General term of given expansion is 
    $$T_{r+1}=\sum_{r=0}^{12}\displaystyle^{12}C_{r}\left ( \dfrac{x}{a} \right )^{12-r}\left( \dfrac{3a}{x^2} \right )^{r} (-1)^r$$
    We need $$9^{th}$$ term hence put $$r=8$$
    $$T_{8+1}=\displaystyle^{12}C_{8}\left ( \dfrac{x}{a} \right )^{12-8}\left( \dfrac{3a}{x^2} \right )^{8} (-1)^8$$

    $$T_{9}=\displaystyle^{12}C_{8}\left ( \dfrac{x}{a} \right )^{4}\left( \dfrac{3a}{x^2} \right )^{8} $$

    $$T_{9}=\displaystyle^{12}C_{8} x^{4-16}\cdot 3^8 \cdot a^{8-4}  $$

    $$T_{9}=\displaystyle^{12}C_{8}\cdot 3^8 x^{-12} \cdot a^{4}  $$
    But we know that $$\displaystyle^{n}C_{r}=\displaystyle^{n}C_{n-r}$$
    $$\displaystyle^{12}C_{8}=\displaystyle^{n}C_{4}$$
    So
    $$T_{9}=\displaystyle^{12}C_{4}\cdot 3^8 x^{-12} \cdot a^{4}  $$
  • Question 2
    1 / -0
    The middle term in the expansion of $$(x + 4)^4$$ is:
    Solution
    Given 
    $$(x+4)^4$$
    Here the middle terms can be calculated by 
    middle term$$=\dfrac{n}{2}+1$$

    $$=\dfrac{4}{2}+1$$

    $$=3^{th} term$$

    $=\displaystyle^4C_{2}x^2 4^2$$

    $$=\dfrac{4!}{2!2!}x^2\times 16$$

    $$=\dfrac{4\times 3}{2\times 1}x^2\times 16$$

    $$=96x^2$$
  • Question 3
    1 / -0
    Find the term which has the exponent of x as 8 in the expansion of $$\displaystyle\left(x^{\displaystyle\frac{5}{2}}-\frac{3}{x^3\sqrt{x}}\right)^{10}$$
    Solution
    Given, $$\left(x^{\dfrac{5}{2}}-\dfrac{3}{x^3\sqrt{x}}\right)^{10}$$

    General term,

    $$T_{r+1}={^{n}C_r}x^{n-r}y^r$$

    $$T_{r+1}={^{10}C_r}(x^{\dfrac{5}{2}})^{10-r}\left(-\dfrac{3}{x^3\sqrt{x}}\right)^r$$

    $$T_{r+1}={^{10}C_r}(x)^{25-\dfrac{5r}{2}}\dfrac{(-3)^r}{x^{\dfrac{7}{2}r}}$$

    $$T_{r+1}={^{10}C_r}(-3)^r(x)^{25-6r}$$

    given the exponent of x as $$8$$

    $$25-6r=8$$

    $$25-8=6r$$

    $$6r=17$$

    $$r=\dfrac{17}{6}$$

    since r is a fraction number which is not possible. Hence, the term which has the exponents of x as $$8$$ in the expansion of $$\left(x^{\dfrac{5}{2}}-\dfrac{3}{x^3\sqrt{x}}\right)^{10}$$
    does not exist.

  • Question 4
    1 / -0
    Find the coefficient of the term independent of x in the expansion of $$\displaystyle\left(6x^3-\frac{5}{x^6}\right)^{12}$$.
    Solution
    Given, $$\left(6x^3-\dfrac{5}{x^6}\right)^{12}$$

    General term,
    $$T_{r+1}={^{n}C_r}x^{n-r}y^r$$

    To find coefficient of the term independent of x
    $$T_{r+1}={^{12}C_r}(6x^3)^{12-x}\left(\dfrac{-5}{x^6}\right)^r$$
    $$T_{r+1}={^{12}C_r}(6)^{12-r}(x)^{36-3r}\dfrac{(-5)^r}{x^{6r}}$$
    $$T_{r+1}={^{12}C_r}(6)^{12-x}(-5)^r(x)^{36-9r}$$ ......$$(1)$$

    Since, term is independent of x.
    $$36-9r=0$$
    $$9r=36$$
    $$r=4$$

    Putting $$r=4$$ in $$(1)$$
    $$T_{r+1}={^{12}C_4}(6)^{12-4}(-5)^4(x)^0$$
    $$T_{r+1}={^{12}C_4}(6)^8(5)^4$$
    So, the coefficient of the term independent of x in the expansion of $$\left(6x^3-\dfrac{5}{x^6}\right)^{12}$$ is $$^{12}C_46^85^4$$.
  • Question 5
    1 / -0
    If 'p' and 'q' are the coefficients of $$x^a$$ and $$x^b$$ respectively in $$(1+x)^{a+b}$$, then
    Solution
    Given $$(1+x)^{a+b}$$
    General term
    $$T_{r+1}={^{n}C_r}x^{n-r}y^r$$
    $$T_{r+1}={^{n}C_r}x^{n-r}y^r$$
    $$T_{r+1}={^{a+b}C_r}(1)^{a+b-r}(x)^r$$
    given 'p' the coefficeint of $$x^a$$
    $$r=a$$
    $$T_{r+1}={^{a+b}C_a}(1)^{a+b-a}(x)^a$$
    $$T_{r+1}={^{a+b}C_a}(1)^b(x)^a$$
    given 'q' the coefficient of $$x^b$$
    $$r=b$$
    $$T_{r+1}={^{a+b}C_b}(1)^{a+b-b}(x)^b$$
    $$T_{r+1}={^{a+b}C_b}(1)^a(x)^b$$
    $$p={^{a+b}C_a}$$
    $$q={^{a+b}C_b}={^{a+b}C_{a+b-b}}={^{a+b}C_a}$$
    Using $${^{n}C_r}={^{n}C_{n-r}}$$
    Hence $$p=q$$.

  • Question 6
    1 / -0
    If sum of the first 3 coefficients is $$16$$ in the expansion $$\displaystyle\left(x+\frac{1}{x^3}\right)^n$$, then find n.
    Solution
    Given $$\left(x+\dfrac{1}{x^3}\right)^n$$

    General term. $$T_{r+1}={^{n}C_r}x^{n-r}y^r$$
    $$T_{r+1}={^{n}C_r}(x)^{n-r}\left(\dfrac{1}{x^3}\right)^r$$
    $$T_{r+1}={^{n}C_r}(x)^{n-r-3r}$$
    $$T_{r+1}={^{n}C_r}(x)^{n-4r}$$

    Given, sum of the first three coefficients is $$16$$
    $$T_1=T_{0+1}={^{n}C_0}(x)^n$$
    $$T_2=T_{1+1}={^{n}C_1}(x)^{n-4}$$
    $$T_3=T_{2+1}={^{n}C_2}(x)^{n-8}$$

    $${^{n}C_0}+{^{n}C_1}+{^{n}C_2}=16$$
    $$\dfrac{n!}{n!}+\dfrac{n!}{1!(n-1)!}+\dfrac{n!}{2!(n-2)!}=16\\$$
    $$\dfrac{n(n-1)!}{(n-1)!}+\dfrac{n(n-1)(n-2)!}{2(n-2)!}=15\\$$
    $$n+\dfrac{n(n-1)}{2}=15\\$$
    $$\dfrac{2n+n^2-n}{2}=15\\$$
    $$n^2+n=30\\$$
    $$n^2+n-30=0\\$$
    $$n^2+6n-5n-30=0\\$$
    $$n(n+6)-5(n+6)=0\\$$
    $$(n+6)(n-5)=0\\$$
    $$\therefore$$ Since n cannot be negative
    so, $$n=5$$
    Hence, option C is correct.
  • Question 7
    1 / -0
    The value of the sum $${ \left( _{  }^{ n }{ { C }_{ 1 } } \right)  }^{ 2 }+{ \left( _{  }^{ n }{ { C }_{ 2 } } \right)  }^{ 2 }+{ \left( _{  }^{ n }{ { C }_{ 3 } } \right)  }^{ 2 }+\dots +{ \left( _{  }^{ n }{ { C }_{ n } } \right)  }^{ 2 }$$ is
    Solution
    We know that 
    $${ \left( 1+x \right)  }^{ n }=\ ^{ n }{ C }_{ 0 }+\ ^{ n }{ C }_{ 1 }x+\ ^{ n }{ C }_{ 2 }{ x }^{ 2 }+\dots +\ ^{ n }{ C }_{ n }{ x }^{ n }$$           .....(i)
    and 
    $${ \left( x+1 \right)  }^{ n }=\ ^{ n }{ C }_{ 0 }{ x }^{ n }+\ ^{ n }{ C }_{ 1 }{ x }^{ n-1 }+\ ^{ n }{ C }_{ 2 }{ x }^{ n-2 }+\dots +\ ^{ n }{ C }_{ n }$$           .....(ii)
    On multiplying equations (i) and (ii), we get
    $${ \left( 1+x \right)  }^{ 2n }=\left( ^{ n }{ C }_{ 0 }+^{ n }{ C }_{ 1 }x+^{ n }{ C }_{ 2 }{ x }^{ 2 }+\dots +^{ n }{ C }_{ n }{ x }^{ n } \right) \times \left( ^{ n }{ C }_{ 0 }{ x }^{ n }+^{ n }{ C }_{ 1 }{ x }^{ n-1 }+^{ n }{ C }_{ 2 }{ x }^{ n-2 }+\dots +^{ n }{ C }_{ n } \right) $$
    Coefficient of $${ x }^{ n }$$ in right hand side $$={ \left( ^{ n }{ C }_{ 0 } \right)  }^{ 2 }+{ \left( ^{ n }{ C }_{ 1 } \right)  }^{ 2 }+\dots +{ \left( ^{ n }{ C }_{ n } \right)  }^{ 2 }$$
    and 
    coefficient of $${ x }^{ n }$$ in left hand side $$=\ ^{ 2n }{ C }_{ n }$$
    $$\therefore { \left( ^{ n }{ C }_{ 0 } \right)  }^{ 2 }+{ \left(\ ^{ n }{ C }_{ 1 } \right)  }^{ 2 }+\dots +{ \left( ^{ n }{ C }_{ n } \right)  }^{ 2 }=\dfrac { 2n! }{ n!n! } $$
    $$\Rightarrow { \left( ^{ n }{ C }_{ 1 } \right)  }^{ 2 }+\dots +{ \left( ^{ n }{ C }_{ n } \right)  }^{ 2 }=\dfrac { \left( 2n \right) ! }{ n!n! } -1$$ $$=\ ^{ 2n }{ C }_{ n }-1$$
  • Question 8
    1 / -0
    The coefficient of $$x^{10}$$ in the expansion of $$1 + (1 + x) + ...............................+(1 + x)^{20}$$ is
    Solution
    The given series is in GP. Hence, its sum
    $$S = \dfrac {1\left \{(1 + x)^{20 + 1} - 1\right \}}{(1 + x) - 1} = \dfrac {(1 + x)^{21} - 1}{x}$$
    Therefore, the required coefficient of $$x^{10}$$ in the expansion of $$\dfrac {(1 + x)^{21} - 1}{x}$$
    $$=$$ Coefficient of $$x^{11}$$ in the expansion of $$(1 + x)^{21} - 1$$
    $$=\ ^{21}C_{11}$$
  • Question 9
    1 / -0
    The middle term in the expansion of $$(1 + x)^{2n}$$ is
    Solution
    Middle term in the expansion of $$(1 + x)^{2n}$$; is $$= t_{n + 1}$$

    $$= ^{2n}C_{n}.1^{2n - n}.x^{n}$$

    $$ = \dfrac {(2n)!}{(2n - n)!n!}.x^{n} $$

    $$= \dfrac {\overline {2n}(2n - 1)(\overline {2n - 2})(2n - 3) .... \overline {4}\times 3\times \overline {2} \times 1}{(n!)(n!)} . x^{n}$$

    $$= \dfrac {2^{n}[n(n - 1)(n - 2) ....\times 2\times 1][(2n - 1)(2n - 3) .... 3\times 1]}{(n!)(n!)} x^{n} $$

    $$=\dfrac {(2n - 1)(2n - 3) ....3\times 1}{n!} 2^{n}x^{n}$$
  • Question 10
    1 / -0
    The number of irrational terms in the binomial expansion of $$(3^{1/5}+7^{1/3})^{100}$$ is
    Solution
    General term of $$(3^{1/5}+7^{1/3})^{100}$$ is given by, 
    $$T_{r+1}=\ ^{100}C_r(3^{1/5})^{100-r}(7^{1/3})^r$$
    $$\displaystyle =\ ^{100}C_r\cdot 3^{\frac{100-r}{5}}\cdot 7^{\frac{r}{3}}$$
    For a rational term, 
    $$\dfrac{100-r}{5}$$ and $$\dfrac{r}{3}$$ must be integer.
    Hence, 
    $$r=0, 15, 30, 45, 60, 75, 90$$
    $$\therefore$$ There are seven rational terms.
    Hence, number of irrational terms $$=101-7=94$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now