Self Studies

Binomial Theorem Test - 37

Result Self Studies

Binomial Theorem Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The middle term in the expansion of $$\left (x - \dfrac {1}{x}\right )^{18}$$ is
    Solution
    The general term in the expansion $$\left (x - \dfrac {1}{x}\right )^{18}$$ is given by
    $$T_{r + 1} = ^{18}C_{r} (x)^{18 - r} \left (-\dfrac {1}{x}\right )^{r}$$
    Here, $$n = 18$$
    $$\therefore$$ The middle term is $$T_{9 + 1}$$, where $$r = 9$$
    $$\therefore T_{9 + 1} = ^{18}C_{9} (-1)^{9} x^{18 - 2r}$$
    $$= -^{18}C_{9}x^{18 - 18} = -^{18}C_{9}$$
  • Question 2
    1 / -0
    If $${ \left( 1+x+{ x }^{ 2 }+{ x }^{ 3 } \right)  }^{ 5 }=\displaystyle\sum _{ k=0 }^{ 15 }{ { a }_{ k }{ x }^{ k } } $$ then $$\displaystyle\sum _{ k=0 }^{ 7 }{ { a }_{ 2k } } $$ is equal to
    Solution
    Given, $${ \left( 1+x+{ x }^{ 2 }+{ x }^{ 3 } \right)  }^{ 5 }=\displaystyle\sum _{ k=0 }^{ 15 }{ { a }_{ k }{ x }^{ k } } $$
    $$\Rightarrow { \left[ \left( 1+x \right) +x\left( 1+x \right)  \right]  }^{ 5 }=\displaystyle\sum _{ k=0 }^{ 15 }{ { a }_{ k }{ x }^{ k } } $$
    $$\Rightarrow { \left( 1+x \right)  }^{ 10 }={ a }_{ 0 }{ x }^{ 0 }+{ a }_{ 1 }x+{ a }_{ 2 }{ x }^{ 2 }+\dots +{ a }_{ 15 }{ x }^{ 15 }$$
    $$\Rightarrow _{  }^{ 10 }{ { C }_{ 0 } }+_{  }^{ 10 }{ { C }_{ 1 } }x+_{  }^{ 10 }{ { C }_{ 2 } }{ x }^{ 2 }+\dots +_{  }^{ 10 }{ { C }_{ 10 } }{ x }^{ 10 }$$
    $$={ a }_{ 0 }+{ a }_{ 1 }x+{ a }_{ 2 }{ x }^{ 2 }+{ a }_{ 3 }{ x }^{ 3 }+\dots +{ a }_{ 15 }{ x }^{ 15 }$$
    On equating the coefficient of constant and even powers of $$x$$, we get
    $${ a }_{ 0 }=_{  }^{ 10 }{ { C }_{ 0 } },\quad { a }_{ 2 }=_{  }^{ 10 }{ { C }_{ 2 } },$$
    $${ a }_{ 4 }=_{  }^{ 10 }{ { C }_{ 4 } },\dots ,{ a }_{ 10 }=_{  }^{ 10 }{ { C }_{ 10 } },$$
    $${ a }_{ 12 }={ a }_{ 14 }=0$$
    $$\therefore \displaystyle\sum _{ k=0 }^{ 7 }{ { a }_{ 2 }k } =_{  }^{ 10 }{ { C }_{ 0 } }+_{  }^{ 10 }{ { C }_{ 2 } }+^{ 10 }{ { C }_{ 4 } }+^{ 10 }{ { C }_{ 6 } }+^{ 10 }{ { C }_{ 8 } }+^{ 10 }{ { C }_{ 10 } }+0+0$$
    $$={ 2 }^{ 10-1 }=29$$
    $$=512$$
  • Question 3
    1 / -0
    Find the sum of coefficients in the expansion of $$\left(1-\dfrac 2x+\dfrac {4}{x^2}\right)^n$$ given that the number of terms are $$28$$
    Solution
    $$\left(1-\dfrac 2x+\dfrac {4}{x^2}\right)^n$$ and number of terms $$=28$$

    Number of terms $$=^{n+3-1}C_{3-1} = ^{n+2}C_2$$

    $$\dfrac {(n+2)!}{2! (n!)} = \dfrac {(n+2)(n+1)}{2} = 28$$

    $$n^2+3n-54=0$$

    $$n^2-6n+9n-54=0$$

    $$(n+3)(n-6)=0$$

    $$n=6$$

    Number of terms $$=\left(1-\dfrac 2x+\dfrac {4}{x^2}\right)^6$$

    Sum of coefficients is known when $$x=1$$

    No. of terms $$=(1-2+4)^6 = 3^6 = 729$$
  • Question 4
    1 / -0
    $$(x+1)^n=C_0+C_1x^1+C_2x^2....C_nx^n$$.
    Find the value of $$C_0+C_1+C_2.....+C_n$$
    Solution
    $${ \left( x+1 \right)  }^{ n }={ C }_{ 0 }+{ C }_{ 1 }x+{ C }_{ 2 }{ x }^{ 2 }+...+{ C }_{ n }{ x }^{ n }\\ $$
    Put  $$x=1$$,  $${ \left( 2 \right)  }^{ n }={ C }_{ 0 }+{ C }_{ 1 }+{ C }_{ 2 }+...+{ C }_{ n }\\ $$
    Hence,  $$C$$ is correct.
  • Question 5
    1 / -0
    Let $$n \in N$$, such that $$(1+x+x^2)^n=a_0+a_1x+a_2x^2...a_{2n}x^{2n}$$ The value of $$a_r$$ when $$(0\leq r\leq 2n)$$
    Solution
    We have 
    $${(1+x+x^2)}^n$$ $$=$$ $$\sum _{r=0 }^{2n  }{  a_rx^r}$$
    Replace $$x$$ by $$\dfrac{1}{x}$$ 
    Therefore, $$\left (1+\dfrac{1}{x}+\dfrac{1}{x^2}\right)=$$ $$\sum _{r=0 }^{2n  }{  a_rx^r}$$
    $$\Rightarrow$$ $${(1+x+x^2)}^n$$ $$=$$ $$\sum _{r=0 }^{2n  }{  a_r{x}^{2n-r}}$$
    $$\Rightarrow$$ $$\sum _{r=0 }^{2n  }{  a_rx^r}$$ $$=$$ $$\sum _{r=0 }^{2n  }{  a_r{x}^{2n-r}}$$
    So, equating both the sides, we get $$a_r$$ $$=$$ $$a_{2n-r}$$.
  • Question 6
    1 / -0
    Find the coefficient of $$x^n$$ in expansion of $$(1 + x) (1 - x)^n$$.
  • Question 7
    1 / -0
    The general term in $$(x + y)^n$$ is given by
    $$T_{r+1}=$$ 
    Solution
    The general term $${ T }_{ r+1 }=^{ n }{ { C }_{ r }{ x }^{ n-r }{ y }^{ r } }$$
    So, $$D$$ is correct.
  • Question 8
    1 / -0
    Which of the following is incorrect?
    Solution
    As we know that 
    $$(1+x)^n=\displaystyle^nC_{0}+\displaystyle^nC_{1}x+\displaystyle^nC_{2}x^2+......+\displaystyle^nC_{n}x^n$$

    In this expansion coefficient of the first and last term be same 
    $$\displaystyle^nC_{r}=\displaystyle^nC_{n-r}$$

    $$\dfrac{n!}{r!(n-r)!}=\dfrac{n!}{(n-r)!(n-n+r)!}$$ 

    $$\dfrac{n!}{r!(n-r)!}=\dfrac{n!}{(n-r)!(r)!}$$ 
    Hence it is correct 
    $$\displaystyle^nC_{r}=\displaystyle^nC_{n-r}$$

    $$\displaystyle^nC_{r}=\displaystyle^{n-1}C_{r}+\displaystyle^{n-1}C_{r-1}$$
    Then by fromula $$\displaystyle^nC_{r}+\displaystyle^nC_{r-1}=\displaystyle^{n+1}C_{r}$$
    $$\displaystyle^nC_{r}=\displaystyle^{n-1+1}C_{r}$$
    $$\displaystyle^nC_{r}=\displaystyle^{n}C_{r}$$
    It is also correct 

    By formula of permutation 
    $$\dfrac{\displaystyle^nP_{r}}{r!}=\displaystyle^{n}C_{r}$$

    $$\displaystyle^nP_{r}=r!\displaystyle^{n}C_{r}$$
  • Question 9
    1 / -0
    If the middle term of $$\left(\dfrac 1x +x\sin x\right)^{10}$$ is equal to $$7\dfrac 78$$, then the principal value of $$x$$ is: 
    Solution
    Solution:
    Middle term of the expansion $$\left(\cfrac1x+x\sin x\right)^{10}$$ is $$T_6.$$
    $$T_6={}^{10}C_5\times\left(\cfrac1x\right)^5\times(x\sin x)^5=7\cfrac78$$
    or, $${}^{10}C_5\times \sin^5x=\cfrac{63}8$$
    or, $$252\times \sin^5x=\cfrac{63}8$$
    or, $$\sin^5x=\cfrac{1}{32}$$
    or, $$\sin x=\cfrac 12$$
    or, $$x=30^\circ$$
    Hence, B is the correct option.
  • Question 10
    1 / -0
    If the value of
    $$C_0+2 \cdot C_1 + 3 \cdot C_2+........+(n+1)\cdot C_n=576$$, then n is ______.
    Solution
    We have: $$(1 + x)^n = C_0 + C_1x + C_2x^2 + ... + C_nx^n$$
    Multiplying by $$x$$ on both sides, we get $$x(1 + x)^n = C_0x + C_1x^2 + C_2x^3 + ... + C_nx^{n + 1}$$
    Differentiating both sides by $$x$$, we get
    $$xn(1 + x)^{n - 1} + (1 + x)^n = C_0 + 2C_1x + 3C_2x^2 + ... + (n + 1)C_nx^n$$
    Substituting $$x = 1$$, we have  
    $$n2^{n - 1} + 2^n = C_0 + 2C_1 + 3C_2 + ... + (n + 1)C_n$$
    Thus, the R.H.S. is what has been asked, and so $$n2^{n - 1} + 2^n = 576$$
    i.e. $$2^{n - 1} (2 + n) = 576$$
    If $$n = 5, n + 2$$ becomes $$7$$ and $$576$$ is not divisible by $$7$$.
    Similarly, $$n$$ cannot be $$9$$.
    When $$n = 7, 2^6 \times 9 = 64 \times 9 = 576$$
    Ans is option $$A$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now