Using binomial theorem, we can write
$$\displaystyle \left({ x }^{ 3 }-\cfrac { 1 }{x^{2}} \right)^{ n }=\sum_{ r=0 }^{ n }\ { _{ r }^{ n }{ C{ \left(x ^{ 3 }\right) }^{ n-r } } } { \left(\cfrac { -1 }{ { x }^{ 2 } } \right) }^{ r }\\ =\displaystyle \sum_{ r=0 }^{ n }{ { \left(-1\right) }^{ r }\ {}_{ r }^{ n }{ C }{ x }^{ \left(3n-5r\right) } } $$
For $${x}^{3}$$ and $${x}^{10}$$ let value of r be $${ r }_{ 5 }$$ and $${ r }_{ 10 }$$ respectively
$$3n-5{r}_{10}=5$$ ......... $$(i)$$
$$3n-5{r}_{10}=10$$ .......... $$(ii)$$
$${ \left(-1\right) }^{ { r }_{ 5 } }\quad _{ { r }_{ 5 } }^{ n }{ C\quad }{ x }^{ \left(3n-5{ r }_{ 5 }\right) }$$$$=-{ \left(-1\right) }^{ { r }_{ 10} }\quad _{ { r }_{ 10 } }^{ n }{ C\quad }{ x }^{ \left(3n-5{ r }_{ 10}\right) }$$
Given sum of coefficient of $${x}^{5}$$ and $${x}^{10}$$ is 0
All terms are positive, but still there is a negative sign, means one of $${r}_{5}$$ and $${r}_{10}$$ is even and other is odd
By properties of combinations
$$_{ { r }_{ 5 } }^{ n }{ C}$$$$={}_{ { r }_{ 10 } }^{ n }{ C\quad }$$
$${r}_{5}+{r}_{10}=n$$ .......... $$(iii)$$
Adding $$(i)$$ and $$(ii)$$
$$6n-5\left({r}_{5}+{r}_{10}\right)=15$$
From $$(iii),$$
$${r}_{5}+{r}_{10}=n$$
$$\Rightarrow n=15$$