Self Studies

Binomial Theorem Test - 39

Result Self Studies

Binomial Theorem Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The coefficient of $$x^{2012}$$ in $$\dfrac{1+x}{(1+x^2)(1-x)}$$ is.
    Solution
    $$\displaystyle{\frac { (1+x) }{ (1+{ x }^{ 2 })(x-1) } =\frac { x }{ (1+{ x }^{ 2 }) } +\frac { 1 }{ (1-x) } }$$
    The general term for $$\displaystyle{{ \left( 1-x \right)  }^{ -1 }=1+x+{ x }^{ 2 }+{ x }^{ 3 }+.........}$$
    $$\displaystyle{{ \left( 1-x \right)  }^{ -1 }=\sum _{ 0 }^{ \infty  }{ { x }^{ n } } .........(i)}$$
    Replacing $$x$$ by $$-{ x }^{ 2 }$$
     $$\displaystyle{\frac { 1 }{ 1+{ x }^{ 2 } } =1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }.......\\ \frac { 1 }{ 1+{ x }^{ 2 } } =\sum _{ 0 }^{ \infty  }{ { { (-1) }^{ n }x }^{ 2n } }} $$
    Multiplying both sides by $$x$$
    $$\displaystyle{\frac { x }{ 1+{ x }^{ 2 } } =\sum _{ 0 }^{ \infty  }{ { { (-1) }^{ n }x }^{ 2n+1 } } ....(ii)}$$
    From (i) clearly the cofficient of $${ x }^{ 2012 }$$ is $$1$$ and there is no term with even cofficient in $$(ii)$$
    So the cofficient of $$\displaystyle{{ x }^{ 2012 }}$$ in the given expression is $$1$$

  • Question 2
    1 / -0
    Let $$n$$ be a positive integer and, $${ \left( 1+x \right)  }^{ n }={ a }_{ 0 }+{ a }_{ 1 }x+{ a }_{ 2 }{ x }^{ 2 }+\dots +{ a }_{ n }{ x }^{ n }$$. What is $${ a }_{ 0 }+{ a }_{ 1 }+{ a }_{ 2 }+\dots +{ a }_{ n }$$ equal to?
    Solution
    Given expansion is $${(1+x)}^n=a_0+a_1 x+a_2 x^2+....a_n x^n$$
    Substituting $$x=1$$ on both the sides we get,
    $${(1+1)}^n=a_0+a_1\times 1+a_2\times 1^2+....a_n\times 1^n$$
    $$\implies 2^n=a_0+a_1+a_2+...a_n$$
    Thus, the value of $$a_0+a_1+a_2+...a_n$$ is $$2^n$$.
  • Question 3
    1 / -0
    $$5^{th}$$ term from the end in the expansion of $$\left( \dfrac{x^2}{2} - \dfrac{2}{x^2} \right )^{12}$$ is
    Solution
    $$ { 5 }^{ th }$$ term in the expansion of$${ \left( \cfrac { { x }^{ 2 } }{ 2 } -\cfrac { 2 }{ { x }^{ 2 } }  \right)  }^{ 12 }$$ is
    $$ { T }_{ r+1 }= { }^nC_r { x }^{ r }.{ y }^{n- r }$$
    $$ { T }_{ 5 }= { }^{12}C_4 \left[{ \left( { \cfrac { { x }^{ 2 } }{ 2 }  } \right) ^{ 4 }{ \left( \cfrac { -2 }{ { x }^{ 2 } }  \right)  }^{ 8 } }\right]$$
    $$ \quad \quad = \cfrac { 12! }{ 4!8! } .\cfrac { { x }^{ 8 } }{ { 2 }^{ 4 } } .\cfrac { { 2 }^{ 8 } }{ { x }^{ 16 } }$$
    $$ \quad \quad = { 7920x }^{ -4 } $$
  • Question 4
    1 / -0
    The value of $${ }^nC_0 - { }^nC_1 + { }^n C_2 - .... + (-1)^{n^n}C_n$$ is:
    Solution
    By Binomial Expansion we know,
    $${ \left( a+b \right)  }^{ n }=^{ n }{ C }_{ 0 }{ a }^{ 0 }{ b }^{ n }+^{ n }{ C }_{ 1 }{ a }^{ 1 }{ b }^{ n-1 }+....+^{ n }{ C }_{ n-1 }{ a }^{ n-1 }{ b }^{ 1 }+^{ n }{ C }_{ n }{ a }^{ n }{ b }^{ 0 }$$
    Now putting $$a=-1$$ & $$b=+1$$
    we have,
    $${ \left( -1+1 \right)  }^{ n }=^{ n }{ C }_{ 0 }{ \left( -1 \right)  }^{ 0 }{ \left( +1 \right)  }^{ n-1 }+^{ n }{ C }_{ 0 }{ \left( -1 \right)  }^{ 1 }{ \left( +1 \right)  }^{ n-1 }+.....+^{ n }{ C }_{ n-1 }{ \left( -1 \right)  }^{ n-1 }\left( +1 \right) +^{ n }{ C }_{ n }{ \left( -1 \right)  }^{ n }{ \left( +1 \right)  }^{ 0 }$$
    $$\Rightarrow 0 =^{ n }{ C }_{ 0 }{ \left( -1 \right)  }^{ 0 }{ \left( +1 \right)  }^{ n-1 }+^{ n }{ C }_{ 0 }{ \left( -1 \right)  }^{ 1 }{ \left( +1 \right)  }^{ n-1 }+.....+^{ n }{ C }_{ n-1 }{ \left( -1 \right)  }^{ n-1 }\left( +1 \right) +^{ n }{ C }_{ n }{ \left( -1 \right)  }^{ n }$$

  • Question 5
    1 / -0
    Consider the expansion of $$(1+x)^{2n+1}$$
    The average of the coefficients of the two middle terms in the expansion is
    Solution
    Since, $$2n+1$$ is odd.
    Hence, $$\cfrac{2n+1+1}{2}$$ and $$\cfrac{2n+1+3}{2}$$ are two middle terms.
    i.e. $$(n+1)th$$ and $$(n+2)th$$ terms are two middle terms.
    $$\therefore\cfrac{C^{2n+1}_n+ C^{2n+1}_{n+1}}{2}=\cfrac{C^{2n+1+1}_{n+1}}{2}$$
    $$=\cfrac12C^{2n+2}_{n+1}=\cfrac12.\cfrac{2n+2}{n+1}C^{2n+1}_{n}=C^{2n+1}_{n}$$
    Hence, B is the correct option.
  • Question 6
    1 / -0
    In the expansion of $$\left( x^3 - \dfrac{1}{x^2} \right )^n , n \in N$$, if the sum of the coefficient of $$x^5$$ and $$x^{10}$$ is $$0$$, then $$n$$ is :
    Solution
    Term of $${ x }^{ 5 }=^{ n }{ C }_{ r }\quad { x }^{ 3r }{ \left( \cfrac { -1 }{ { x }^{ 2 } }  \right)  }^{ n-r }=^{ n }{ C }_{ r }\quad { x }^{ 3r }. { x }^{ 2r-2n }. { \left( -1 \right)  }^{ n-r }$$
    So  $$3r+2r-2n=5$$
    $$r=\cfrac { 5+2n }{ 5 } \longrightarrow \left( 1 \right) $$
    Also for $${ x }^{ 10 }$$ be $$\left( { r }^{ 1 }+1 \right) ^{ th }$$ term
    So term with $${ x }^{ 10 }=^{ n }C_{ { r }^{ 1 } }{ x }^{ { 3r }^{ 1 } }{ \left( \cfrac { -1 }{ { x }^{ 2 } }  \right)  }^{ n-r }$$
    $$\Rightarrow 3{ r }^{ 1 }+2{ r }^{ 1 }-2n=10$$
    $${ r }^{ 1 }=\cfrac { 2n+10 }{ 5 } \longrightarrow \left( 2 \right) $$
    Now we know if $$\left| ^{ n }{ C }_{ r } \right| =\left| ^{ n }{ C }_{ { r }^{ 1 } } \right| \Rightarrow n=r+{ r }^{ 1 }$$
    Now we add co oefficient  of  $${ x }^{ 5 }\& { x }^{ 10 }$$
    $$^{ n }{ C }_{ r }{ \left( -1 \right)  }^{ n-r }+^{ n }{ C }_{ { r }^{ 1 } }{ \left( -1 \right)  }^{ { n-r }^{ 1 } }=0$$
    Co oefficient of $${ x }^{ 5 }\quad is\quad ^{ n }{ C }_{ r }{ \left( -1 \right)  }^{ n-r }$$; co oeffiecient of $${ x }^{ 10 }\quad is\quad ^{ n }{ C }_{ { r }^{ 1 } }{ \left( -1 \right)  }^{ { n-r }^{ 1 } }$$
    $$\Rightarrow ^{ n }{ C }_{ r }{ \left( -1 \right)  }^{ n-r }=-\left( ^{ n }{ C }_{ { r }^{ 1 } }\quad { \left( -1 \right)  }^{ { n-r }^{ 1 } } \right) $$
    $$\Rightarrow \left| ^{ n }{ C }_{ r } \right| =\left| ^{ n }{ C }_{ { r }^{ 1 } } \right| $$
    So, $$n=r+{ r }^{ 1 }$$
    $$n=\cfrac { 2n+10 }{ 5 } +\cfrac { 2n+5 }{ 5 } $$
    $$5n=4n+15$$
    $$n=15$$
  • Question 7
    1 / -0
    Consider the expansion of $$(1+x)^{2n+1}$$
    The sum of the coefficients of all the terms in the expansion is
    Solution
    We can get the sum of all coefficients by putting $$x=1$$ in the expansion, because for calculating the coefficients we need the terms independent of $$x$$.
    To find the sum of coefficients of all terms, put $$x=1$$ in the given expression$$(1+x)^{2n+1}$$ we get
    $$2^{2n+1}=2.2^{2n}=2.4^n$$
    Hence, C is the correct option.
  • Question 8
    1 / -0
    How many terms are there in the expansion of $${ \left( 1+2x+{ x }^{ 2 } \right)  }^{ 10 }$$?
    Solution
    Now,
    $$(1+2x+x^{ 2 })^{ 10 }=((1+x)^{ 2 })^{ 10 }=(1+x)^{ 20 }$$
    Now, the number of terms in the expansion of $$(1+x)^{ n }$$ are $$n+1$$.
    Thus, the number of terms in the expansion of $$(1+x)^{20}$$ will be $$20+1=21$$.
    Hence, option C is correct.
  • Question 9
    1 / -0
    The value of the expression $${ _{  }^{ k-1 }{ C } }_{ k-1 }+{ _{  }^{ k }{ C } }_{ k-1 }+....{ _{  }^{ n+k-2 }{ C } }_{ k-1 }$$ is given by :
    Solution
    We know, 
    $$\displaystyle \sum _{ m=k }^{ n }{ { { ^{ m }{ C }_{ r}=\  ^{ n+1 }{ C }_{ r+1\\  } } } } $$ 
    According to the question,
    $$ m= n+k-2$$
    $$ r= k-1$$
    Sum of series is given by 
    $$= \ ^{ m+1 }{ C }_{ k+1\\  }$$ $$ =\ ^{ n+k-1 }{ C }_{ k }$$
  • Question 10
    1 / -0

    Directions For Questions

    For the next three (03) items that follow : 
    In the expansion of $$\left ( x^3-\frac{1}{x^2} \right )^n$$ where n is a positive integer, the sum of the coefficients of $$x^5$$ and $$x^{10}$$ is 0. 

    ...view full instructions

    What is n equal to ? 
    Solution
    Using binomial theorem, we can write
    $$\displaystyle \left({ x }^{ 3 }-\cfrac { 1 }{x^{2}} \right)^{ n }=\sum_{ r=0 }^{ n }\ { _{ r }^{ n }{ C{  \left(x ^{ 3 }\right) }^{ n-r } } } { \left(\cfrac { -1 }{ { x }^{ 2 } } \right) }^{ r }\\ =\displaystyle \sum_{ r=0 }^{ n }{ { \left(-1\right) }^{ r }\ {}_{ r }^{ n }{ C }{ x }^{ \left(3n-5r\right) } } $$
    For  $${x}^{3}$$ and $${x}^{10}$$ let value of r be $${ r }_{ 5 }$$ and $${ r }_{ 10 }$$ respectively
    $$3n-5{r}_{10}=5$$ ......... $$(i)$$
    $$3n-5{r}_{10}=10$$  .......... $$(ii)$$
    $${ \left(-1\right) }^{ { r }_{ 5 } }\quad _{ { r }_{ 5 } }^{ n }{ C\quad  }{ x }^{ \left(3n-5{ r }_{ 5 }\right) }$$$$=-{ \left(-1\right) }^{ { r }_{ 10} }\quad _{ { r }_{ 10 } }^{ n }{ C\quad  }{ x }^{ \left(3n-5{ r }_{ 10}\right) }$$
    Given sum of coefficient of $${x}^{5}$$ and $${x}^{10}$$ is 0
    All terms are positive, but still there is a negative sign, means one of $${r}_{5}$$ and $${r}_{10}$$ is even and other is odd
    By properties of combinations 
    $$_{ { r }_{ 5 } }^{ n }{ C}$$$$={}_{ { r }_{ 10 } }^{ n }{ C\quad  }$$
    $${r}_{5}+{r}_{10}=n$$ .......... $$(iii)$$
    Adding $$(i)$$ and $$(ii)$$
    $$6n-5\left({r}_{5}+{r}_{10}\right)=15$$
    From $$(iii),$$
    $${r}_{5}+{r}_{10}=n$$
    $$\Rightarrow n=15$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now