Self Studies

Binomial Theorem Test - 41

Result Self Studies

Binomial Theorem Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$C_0, C_1, C_2, C_3, .... $$ are binomial coefficients in the expansion of $$ ( 1+x)^n $$ , then $$ \dfrac {C_0}{3} - \dfrac {C_1}{4} + \dfrac{}{} - \dfrac{}{} + ... $$ is equal to :
    Solution
    We know $$ (1-x)^n = C_0 - C_1 x + C_2x^2 - ... + (-1)^n C_n \cdot x^n $$

    On multiplying both sides bby $$x^2$$ , we get

    $$ (1-x)^n x^2 = C_0x^2 - C_1 x^3 + C_2x^4 - ... + $$

    On integrating both sides by taking limit $$0$$ to $$1$$. 

    Therefore, $$\displaystyle \int_0^1 ( 1-x)^n x^2 dx  =\displaystyle  \int_0^1 ( C_0x^2 - C_1x^3 + C_2x^4 + ....) dx$$

    $$\displaystyle  \int_0^1 x^n (1-x)^2 dx = \left[ C_0 \dfrac{x^3}{3} - C_1 \dfrac {x^4}{4} + C_2 \dfrac{x^5}{5} - ... \right]_0^1  $$

    $$ \Rightarrow\displaystyle  \int_0^1 x^n ( 1 + x^2 - 2x) dx = \dfrac {C_0}{3} - \dfrac {C_1}{4} + \dfrac {C_2}{5} - ... $$

    Here $$\dfrac {C_0}{3} - \dfrac {C_1}{4} + \dfrac {C_2}{5} - ... $$

    $$ = \left[ \dfrac{x^{n+1}}{n+1} + \dfrac{x^{n+3}}{n+3} - \dfrac{2x^{n+2}}{n+2} \right]_0^1 $$

    $$ = \left[ \dfrac {1}{n+1} + \dfrac{1}{n+3} - \dfrac {2}{n+2} \right] $$
  • Question 2
    1 / -0
    The value of $$r$$ for which the coefficients of $$(r-5)$$th and $$(3r+1)$$th terms in the expansion of $${(1+x)}^{1/2}$$ are equal, is
    Solution
    Since, coefficient of $$(r-5$$th term$$=$$ coefficient of $$=(3r+1)$$th term
    $$\quad { _{  }^{ 12 }{ C } }_{ r-6 }=\quad { _{  }^{ 12 }{ C } }_{ 3r }$$
    $$\Rightarrow$$ $$r-6=3r$$
    or $$12-r+6=3r$$
    $$\rightarrow$$ $$2r=-6$$ or $$4r=18$$
    $$\Rightarrow$$ $$r=-3$$ or $$r=\cfrac { 18 }{ 4 } $$
    Hence no value of $$r$$ exist, because $$r$$ neither be negative nor in fraction
  • Question 3
    1 / -0
    If $$(1 + x + x^{2})^{n} = 1 + a_{1}x + a_{2}x^{2} + ... + a_{2n}x^{2n}$$, then $$2a_{1} - 3a_{2} + ... -(2n + 1)a_{2n}$$ is equal to
    Solution
    Given,
    $$(1 + x + x^{2})^{n} = 1 + a_{1}x + a_{2}x^{2} + ... + a_{2n}x^{2n}$$

    $$\Rightarrow x(1 + x + x^{2})^{n} = x + a_{1}x^{2} + a_{2}x^{3} + ... + a_{2n}x^{2n + 1}$$

    On diffferentiating w.r.t. $$x$$, we get

    $$(1 + x +x^{2})^{n} + x\cdot n(1 + x + x^{2})^{n - 1}(1 + 2x)$$$$= 1 + 2a_{1}x + 3a_{2}x^{2} + ... + a_{2n} \cdot (2n + 1)x^{2n}$$

    On putting $$x = -1$$, we get

    $$(1 - 1 + 1)^{n} - n(1 - 1 + 1)^{n - 1}(1 - 2)$$$$= 1 - 2a_{1} + 3a_{2} + ... + a_{2n} (2n + 1)$$

    $$\Rightarrow 1 - n(-1) = 1 - 2a_{1} + 3a_{2} + ... + a_{2n}(2n + 1)$$

    $$\Rightarrow 2a_{1} - 3a_{2} .... =(2n + 1)a_{2n} = -n$$
  • Question 4
    1 / -0
    The middle term in the expansion of $$\left( \dfrac{10}{x} + \dfrac{x}{10} \right )^{10}$$ is
    Solution
    MIddle term of the expansion of $$\left(\cfrac{10}x+\cfrac x{10}\right)^{10}$$ is $$T_6.$$
    $$T_6={}^{10}C_{5}\left(\cfrac{10}x\right)^5\left(\cfrac x{10}\right)^5$$
    $$T_6={}^{10}C_{5}$$
    Hence, A is the correct option.
  • Question 5
    1 / -0
    If the term free from $$x$$ in the expansion of $$\left (\sqrt {x} - \dfrac {k}{x^{2}}\right )^{10}$$ is $$405$$, then the value of $$k$$ is
    Solution
    General term in the expansion of $$\left (\sqrt {x} - \dfrac {k}{x^{2}}\right )$$

    $$T_{r + 1} = ^{10}C_{r} (\sqrt {x})^{10 - r} \left (\tfrac {-k}{x^{2}}\right )^{r}$$

    $$= ^{10}C_{r}x^{\dfrac {10 - r}{2}} \cdot (-k)^{r} \cdot x^{-2r}$$

    $$= ^{10}C_{r} (-k)^{r} x^{\left (\dfrac {10 - 5r}{2}\right )}$$

    The term is free from $$x$$.

    Put $$\dfrac {10 - 5r}{2} = 0$$

    $$\Rightarrow r = 2$$

    Now, $$^{10}C_{2} (-k)^{2} = 405$$

    $$\Rightarrow \dfrac {10\times 9}{1\times 2}\cdot k^{2} = 405$$

    $$\Rightarrow k^{2} = \dfrac {405}{45} = 9$$

    $$\Rightarrow k = \pm 3$$.
  • Question 6
    1 / -0
    If $${ C }_{ 0 },{ C }_{ 1 },{ C }_{ 2 },\dots ,{ C }_{ 15 }$$ are binomial coefficients in $${ \left( 1+x \right)  }^{ 15 }$$, then $$\dfrac { { C }_{ 1 } }{ { C }_{ 0 } } +2\dfrac { { C }_{ 2 } }{ { C }_{ 1 } } +3\dfrac { { C }_{ 3 } }{ { C }_{ 2 } } +\cdots +15\dfrac { { C }_{ 15 } }{ { C }_{ 14 } } $$ is equal to
    Solution
    We know that,
    $$\dfrac { ^{ n }{ { C }_{ r } } }{ ^{ n }{ { C }_{ r-1 } } } =\dfrac { n-\left( r-1 \right)  }{ r } $$

    $$\Rightarrow r\cdot \dfrac { ^{ n }{ { C }_{ r } } }{ ^{ n }{ { C }_{ r-1 } } } =n+1-r$$

    $$\Rightarrow \displaystyle\sum _{ r=1 }^{ n }{ r\cdot \dfrac { ^{ 16 }{ { C }_{ r } } }{ ^{ 16 }{ { C }_{ r-1 } } }  } =\displaystyle\sum _{ r=1 }^{ 16 }{ \left( 16-r \right)  } $$

    $$\displaystyle 16\times 15-\sum_{r=1}^{n}r$$

    $$=16\times 15-\dfrac { 15\times 16 }{ 2 } $$

    $$=240-120$$

    $$=120$$
  • Question 7
    1 / -0
    Sum of coefficients of the last $$6$$ terms in the expansion of $${ \left( 1+x \right)  }^{ 11 }$$ when the expansion is in ascending powers of $$x$$, is
    Solution
    $$(1+x)^{\prime \prime}=\sum_{r=0}^{11} n_{C_{r}}(1)^{n-r}(x)^{r} \\$$

    $$\text { last } 6 \text { terms of this expansion are } \\$$

    $$\qquad{ }^{\prime \prime} C_{11}+{ }^{\prime \prime} C_{10}+{ }^{\prime \prime} C_{q}+{ }^{\prime \prime} C_{8}+{ }^{\prime \prime} C_{7}+{ }^{\prime \prime} C_{6} \\$$

    $$\text { using }{ }^{n} C_{r}+{ }^{n} C_{r+1}={ }^{n+1} C_{r+1}$$

    $$=12 C_{11}+{ }^{12} C_{9}+{ }^{12} C_{7} \\$$

    $$=12+220+792 \\$$

    $$=1024$$

  • Question 8
    1 / -0
    The middle term in the expansion of $${ \left( 1+x \right)  }^{ 2n }$$ is
    Solution
    Given expansion is $${ \left( 1+x \right)  }^{ 2n }$$,
    The total number of terms are $$2n+1$$ which is an odd number,
    $$\therefore$$ there is only one middle term which is $$\left( \begin{matrix} 2n \\ n \end{matrix} \right) $$,
    $$\left( \begin{matrix} 2n \\ n \end{matrix} \right) =\dfrac { \left( 2n \right) ! }{ n!n! } \\ $$
    $$\Longrightarrow \dfrac { \left[ 1.3.5...\left( 2n-1 \right)  \right] \left[ { 2 }^{ n }n! \right]  }{ n!n! } { x }^{ n }=\dfrac { \left[ 1.3.5...\left( 2n-1 \right)  \right] \left[ { 2 }^{ n } \right]  }{ n! } { x }^{ n }$$

  • Question 9
    1 / -0
    The value of $$\begin{pmatrix} 50 \\ 0 \end{pmatrix}\, \begin{pmatrix} 50 \\ 1 \end{pmatrix} + \begin{pmatrix} 50 \\ 1 \end{pmatrix}\, \begin{pmatrix} 50 \\ 2 \end{pmatrix}+........+\begin{pmatrix} 50 \\ 49 \end{pmatrix}\, \begin{pmatrix} 50 \\ 50 \end{pmatrix}$$ is , where $$^nC_r=\begin{pmatrix} n \\ r \end{pmatrix}$$
    Solution
    $$(1+x)^n=^nC_0+^nC_1x+^nC_2x^2+......+^nC_nx^n$$.
    Now, $$(1+x)^{2n}=(1+x)^n.(1+x)^n$$
    $$=\left(^nC_0+^nC_1x+^nC_2x^2+......^nC_{n-1}x^{n-1}+^nC_nx^n\right).\left(^nC_nx^n+^nC_{n-1}x^{n-1}+......+^nC_2x^2+^nC_1x+^nC_0\right)$$.
    Now, equating the co-efficient of $$x^{n-1}$$ both sides we get,
    $$^{2n}C_{n-1}=(^nC_0)(^nC_{n-1})+(^nC_1)(^nC_{n-2})+......(^nC_{n-1})(^nC_0)$$
    or, $$^{2n}C_{n+1}=(^nC_0)(^nC_{1})+(^nC_1)(^nC_{2})+......(^nC_{n-1})(^nC_n)$$. {Since $$^nC_r=^nC_{n-r}$$]
    Now, putting $$n=50$$ we get ,
    $$^{100}C_{51}=$$$$(^{50}C_0)(^{50}C_{1})+(^{50}C_1)(^{50}C_{2})+......(^{50}C_{49})(^{50}C_{50})$$.
  • Question 10
    1 / -0
    If $$n\epsilon N$$ and $$(1 + 4x + 4x^{2})^{n} = \displaystyle \sum_{r = 0}^{r = 2n} a_{r}x^{r}$$ then value of $$2\displaystyle \sum_{r = 0}^{n}a_{2r}$$ equals
    Solution
    $$\because 1 + 4x + 4x^{2} = (1 + 2x)^{2}$$
    $$\therefore (1 + 2x)^{2n} = \displaystyle \sum_{r = 0}^{2n}a_{r}x^{r}$$
    putting $$x = 1$$
    $$3^{2n} = \displaystyle \sum_{r = 0}^{2n} a_{r} = a_{0} + a_{1} + a_{2} + a_{3} + ..... + a_{2n} .... (i)$$
    and putting $$x = -1$$
    $$1 = \displaystyle \sum_{r = 0}^{r = 2n}a_{r} (-1)^{r} = a_{0} - a_{1} + a_{2} - a_{3} + .... + a_{2n} ... (ii)$$
    Now adding (i) and (ii) we get
    $$2(a_{0} + a_{2} + a_{4} + .... + a_{2n}) = 3^{2n} + 1$$
    $$\Rightarrow 2\displaystyle \sum_{r = 0}^{r =n} a_{2r} = 9^{n} + 1$$
    Hence choice (b) is correct answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now