The binomial expansion of $$(1+x)^n$$ and $$(1+\dfrac{1}{x})^n$$ is given by
$$(1+x)^n = C_{0}+C_{1}x+C_{2}x^{2}+....+C_{n}x^{n} = \sum_{r=0}^{r=n}C_{r}x^{r}$$ ....[1]
$$(1+\dfrac{1}{x})^n = C_{0}+C_{1}\dfrac{1}{x}+C_{2}\dfrac{1}{x^{2}}+....+C_{n}\dfrac{1}{x^{n}} = \sum_{r=0}^{r=n}C_{r}\dfrac{1}{x^{r}}$$ ....[2]
To find the value of $$S_{2}$$, we can multiply above two equations and then compare the coefficients of terms independent of x.
Multiplying equation [1] and [2], we get
$$(1+x)^n (1+\dfrac{1}{x})^{n} = \sum_{r=0}^{r=n}C_{r}x^{r}.\sum_{r=0}^{r=n}C_{r}\dfrac{1}{x^{r}}$$
$$\implies \dfrac{(1+x)^{2n}}{x^{n}} = \sum_{r=0}^{r=n}C_{r}x^{r}.\sum_{r=0}^{r=n}C_{r}\dfrac{1}{x^{r}} $$
$$\implies \dfrac{(1+x)^{2n}}{x^{n}}=C_{0}^{2}+C_{1}^{2}+C_{2}^{2}+...+C_{n}^{2}$$ + terms containing x
Therefore, comparing coefficients of $$x^{0}$$ in L.H.S and R.H.S, we get
Coefficients of $$x^{0}$$ in R.H.S = Coefficients of $$x^{0}$$ in L.H.S
$$\implies C_{0}^{2}+C_{1}^{2}+C_{2}^{2}+...+C_{n}^{2}=$$ coefficient of $$x^{0}$$ in $$\dfrac{(1+x)^{2n}}{x^{n}} $$
$$\implies C_{0}^{2}+C_{1}^{2}+C_{2}^{2}+...+C_{n}^{2}= ^{2n}C_{n} = S_{2}$$ ....[3]
$$(1+\dfrac{1}{x})^n = C_{0}+C_{1}\dfrac{1}{x}+C_{2}\dfrac{1}{x^{2}}+....+C_{n}\dfrac{1}{x^{n}}$$
Differentiating with respect to x, we get
$$\implies n(1+\dfrac{1}{x})^{n-1}(\dfrac{-1}{{x^{2}}}) = 0+C_{1}\dfrac{-1}{x^{2}}+C_{2}\dfrac{-2}{x^{3}}+....+C_{n}\dfrac{-n}{x^{n+1}}$$
$$\implies n(1+\dfrac{1}{x})^{n-1}(\dfrac{1}{{x}}) = C_{1}\dfrac{1}{x}+C_{2}\dfrac{2}{x^{2}}+....+C_{n}\dfrac{n}{x^{n}}$$ ....[4]
To find the value of $$S_{1}$$, we can multiply equations [1] and [4], and then compare the coefficients of terms independent of x.
Multiplying equation [1] and [4], we get
$$n(1+\dfrac{1}{x})^{n-1}(\dfrac{1}{{x}})(1+x)^n=(C_{1}\dfrac{1}{x}+C_{2}\dfrac{2}{x^{2}}+....+C_{n}\dfrac{n}{x^{n}})( C_{0}+C_{1}x+C_{2}x^{2}+....+C_{n}x^{n} )$$
$$\implies n\dfrac{(x+1)^{2n-1}}{x^{n}}=(C_{1}\dfrac{1}{x}+C_{2}\dfrac{2}{x^{2}}+....+C_{n}\dfrac{n}{x^{n}})( C_{0}+C_{1}x+C_{2}x^{2}+....+C_{n}x^{n} )$$
Therefore, comparing coefficients of $$x^{0}$$ in L.H.S and R.H.S, we get
Coefficients of $$x^{0}$$ in R.H.S = Coefficients of $$x^{0}$$ in L.H.S
$$\implies C_{1}^{2}+2C_{2}^{2}+3C_{3}^{2}+...+nC_{n}^{2}=$$ coefficient of $$x^{0}$$ in $$n\dfrac{(x+1)^{2n-1}}{x^{n}} $$
$$\implies C_{1}^{2}+2C_{2}^{2}+3C_{3}^{2}+...+nC_{n}^{2}= n(^{2n-1}C_{n}) = S_{1} $$
Therefore,
$$3S_{1} - S_{2} = 3n(^{2n-1}C_{n})-^{2n}C_{n}$$
$$= 3n\dfrac{(^{2n}C_{n})}{2}-^{2n}C_{n}$$
$$= (\dfrac{3n-2}{2})^{2n}C_{n}$$
Hence, the answer is option (B)