Self Studies

Binomial Theorem Test - 44

Result Self Studies

Binomial Theorem Test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The co-efficient of x in  the expansion of $$(1-2x^3 + 3x^5) \left( 1 + \dfrac{1}{x}\right)^8$$ is :
    Solution
    $$ (1-2x^{3}+3x^{5})(1+\frac{1}{x})^{8} $$
    $$ (1-2x^{3}+3x^{5})(^{8}C_{0}+^{8}C_{1}\frac{1}{x}+^{8}C_{2}+^{8}C_{3}\frac{1}{x^{3}}+...^{8}C_{4}) $$
    $$ = 3.^{8}C_{4}-2^{8}C_{2} $$
    $$ = \dfrac{3.8!}{4.4!}-2\times \dfrac{8!}{6!2!} $$
    $$ = \dfrac{3\times 8\times 7\times 6\times 5\times 4!}{4\times 3\times 2\times 4!}-\dfrac{2\times 8\times 7\times 6!}{6!\times 2!} $$
    $$ = 210-56 $$
    $$ = 154 $$ 

  • Question 2
    1 / -0
    for $$x \in R,x \ne \, - 1$$ , if $${(1 + x)^{2016}} + x{(1 + x)^{2015}} + {x^2}{(1 + x)^{2014}}$$ 
    then $${a_{17}}$$ is equal to :
    Solution
    $$\sum_{i=0}^{2016}{{C}_{i}{x}^{i}}={\left(1+x\right)}^{2016}+x{\left(1+x\right)}^{2015}+{x}^{2}{\left(1+x\right)}^{2014}+...+{x}^{2016}$$ is in G.P

    First term$$={\left(1+x\right)}^{2016}$$

    Common ratio$$=\dfrac{x{\left(1+x\right)}^{2015}}{{\left(1+x\right)}^{2016}}=\dfrac{x}{1+x}$$

    $$\sum_{i=0}^{2016}{{C}_{i}{x}^{i}}=\dfrac{{\left(1+x\right)}^{2016}\left(1-{\left(\dfrac{x}{1+x}\right)}^{2017}\right)}{1-\dfrac{x}{1+x}}$$

    $$=\dfrac{\dfrac{{\left(1+x\right)}^{2016}}{1}-\dfrac{{\left(1+x\right)}^{2017}}{1+x}}{\dfrac{x+1-x}{1+x}}$$

    $$=\dfrac{{\left(1+x\right)}^{2017}-{x}^{2017}}{1}$$

    $$\therefore\,{a}_{17}=^{2017}C_{17}=\dfrac{2007!}{17!2000!}$$

  • Question 3
    1 / -0
    The co-efficient of $${x^5}$$ in the expansion of $${\left( {1 + x} \right)^{21}} + {\left( {1 + x} \right)^{22}} + ........ + {\left( {1 + x} \right)^{30}}$$ is: 
    Solution
    According to question,

    $$(1+x)^{21}$$+$$(1+x)^{22}$$+..................+$$(1+x)^{30}$$

    For , coeff. of $$x^5$$ in the expansion, we need to take out coeff. of $$x^5$$ from every terms of given series.

    i.e; $$^{21}C_5+^{22}C_5+.................+^{30}C_5$$

     Add & subtract $$^{21}C_6$$ in this,

    $$^{21}C_6+^{21}C_5+^{22}C_5+.................+^{30}C_5-^{21}C_6$$

    Since,  ($$^nC_r+^nC{r-1}=^{n+1}C_r$$)

    Therefore,

    =>  $$^{22}C_6+^{22}C_5+.................+^{30}C_5-^{21}C_6$$

      =>  $$^{23}C_6+^{23}C_5+.................+^{30}C_5-^{21}C_6$$

    Similarly , we get

    =>   $$^{30}C_6+^{30}C_5-^{21}C_6$$

    =>   $$^{31}C_6-^{21}C_6$$
  • Question 4
    1 / -0
    If $${S_n} = \sum\limits_{r = 0}^n {\dfrac{1}{{^n{C_r}}}\,\,and\,\,{t_n} = \sum\limits_{r = 0}^n {\dfrac{r}{{^n{C_r}}},\,\,then\,\,\dfrac{{{t_n}}}{{{s_n}}} = } } $$ 
    Solution

  • Question 5
    1 / -0
    In the expansion of $$(1+ax)^n$$, $$n\in N$$, then the coefficient of x and $$x^2$$ are $$8$$ and $$24$$ respectively. Then?
    Solution
    Here in the expansion of $$(1+x.a)^n$$,
    $$n\in N$$, the $$(r+1)^{th}$$ term will be
    $$T_{r+1}=\left (\dfrac {n}{r}\right)a^{n-r}. b^r$$
    here first term $$a=1$$ &
    second term $$b=x.a$$, so,
    $$T_{r+1}=\left (\dfrac {n}{r}\right) (1)^{n-r}. (x.a)^r=\left (\dfrac {n}{r}\right).x^r.a^r$$
    But given that, coefficient of $$x$$ is $$8$$ so,
    For $$x$$ power $$1$$, we have to put $$r=1$$
    So, $$T_2=\left (\dfrac {n}{1}\right)a^1 .x^1$$
    So, $$\left (\dfrac {n}{1}\right)a=8\to (i)$$
    Now, coefficient of $$x^2$$ is $$24$$, so, $$r=2$$
    $$T_3=\left (\dfrac {n}{2}\right) a^2 .x^2$$
    So, $$24=\left (\dfrac {n}{2}\right) a^2\to (ii)$$
    From $$(1)$$ & $$(2), a.n=8\ \Rightarrow \ a=8/n$$
    $$\dfrac {n(n-1)}{2}.a^2=24$$
    $$\dfrac {n(n-1)}{2}\left (\dfrac {8}{n}\right)^2=24$$
    $$\therefore \ \dfrac {n^2-n}{n^2}\times 32=24$$
    $$\therefore \ 1-\dfrac {1}{n}=\dfrac {24}{32}=\dfrac {3}{4}$$, So, $$\boxed {n=4}$$ from $$(i)$$
    $$\boxed {a=2}$$
  • Question 6
    1 / -0
    In the expansion of $$(1+x+{x}^{2}+....+{x}^{27}){(1+x+{x}^{2}+....+{x}^{14})}^{2}$$, the coefficient of $${x}^{28}$$ is
    Solution

  • Question 7
    1 / -0
    The third term from the end in the expansion of $$\left( \dfrac{3x}{5}-\dfrac{5}{2x}\right)^8$$ is
    Solution

    $$Third\>term\>from\>the\>end\>will\>be\>\\(8-3+2)th\>term\>from\>beginning\\T_7=^8C_6(\dfrac{3x}{5})^2(\dfrac{-5}{2x})^6\\=(\dfrac{8\times\>7}{2})\times\>(\dfrac{9}{25})\times x^2\times\>(\dfrac{15625}{64\times\>x^6})\\=(\dfrac{39375}{16x^4})$$

  • Question 8
    1 / -0
    The sum of the binomial coefficients of $${ \left[ 2x+\cfrac { 1 }{ x }  \right]  }^{ n }$$ is equal to $$256$$. The constant term in the expansion is-
    Solution
    We know that Sum of binomial coeficients is:
    $$\Rightarrow ^nC_0+^nC_1+^nC_2+....^nC_n=2^n$$

    Given that 

    $$\Rightarrow 2^n=256$$

    $$\Rightarrow n=8$$

    $$\Rightarrow T_r=\space ^nC_r(2x)^{n-r}(\dfrac{1}{x})^r$$

    $$\Rightarrow ^8C_r(2x)^{8-r}x^{-r}$$

    $$\Rightarrow ^8C_r(2)^{8-r}x^{8-2r}$$

    For contant term , the power of $$x$$ is zero.

    Hence, $$\Rightarrow 8-2r=0$$

    $$\Rightarrow r=4$$

    $$\Rightarrow T_4=\space ^8C_4(2)^{8-4}$$

    $$\Rightarrow T_4=\space ^8C_4(2)^{4}$$

    $$\Rightarrow T_4=1120$$
  • Question 9
    1 / -0
    If $$\left| x \right| < 1$$ then the coefficient of $${x^n}$$ in expansion of $${\left( {1 + x + {x^2} + {x^3}....} \right)^2}$$ is
    Solution
    $$(1+x+x^{2}+..... x^{n})^{2}= ^{2}C_{0}+ ^{2}C_{1} (x+x^{2}+....x^{n}) + ^{2}C_{2} (x+ ..... x^{n})^{2}$$
    Coefficient of $$x^{n}= 1+ $$ coefficient of $$x^{n}$$ in $$(x+........ x^{n})^{2}$$
    $$= 1+1+$$ coefficient $$x^{n}$$ in $$(x^{2}+...... x^{n})^{2}$$
    $$1+1+1+$$ coefficient of $$x^{n}$$ in $$(x^{3}+....... x^{n})^{2}$$
    $$=n +$$ coefficient o f$$x^{n}$$ in $$(x)^{2}$$
    $$=n$$
    $$A$$ is correct.
  • Question 10
    1 / -0
    $$^{10}C_0 ^2- ^{10}C_1^2 + ^{10}C_2^2- .......- (^{10}C_9) + ( ^{10}C_{10})^2= $$
    Solution
    $$^{10}C_0 ^2- ^{10}C_1^2 + ^{10}C_2^2- .......^{10}C_{10} ^{10}C_{10} $$
    $$(1+n)^{10}=^{10}C_0+^{10}C_1 n+^{10}C_2 n^2 ....$$
    $$(1-n)^{10}=^{10}C_0+^{10}C_1 n+^{10}C_2 n^2 ....$$
    $$(1+n)^{10} (1-n)^{10}=$$coeffi. of $$n^{10}$$
    coeff of $$n^{10}=(1-n^2)^{10}= ^{10}C_5 (-1)^5$$
    $$=-^{10}C_5 $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now