Self Studies

Binomial Theorem Test - 45

Result Self Studies

Binomial Theorem Test - 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The middle term in the expansion of $$\left( \dfrac { 2x^{ 2 } }{ 3 } +\dfrac { 3 }{ { 2 }x^{ 2 } }  \right) ^{ 10 }$$ is 
    Solution
    $$ (\frac{2x^{2}}{3}+\frac{3}{2x^{2}})^{10} $$
    $$ \Rightarrow (a+b)^{n} = ^{n}C_{0}a^{n}+^{n}4a^{n}b+--+^{n}C_{\pi }a^{n-\pi }b^{\pi }+-^{n}C_{n}b^{n} $$
    $$ \therefore $$ middle term is $$ 6^{th} $$ here, so :
    $$ = 7_{6} \Rightarrow ^{10}C_{5} (\frac{2x^{2}}{3})^{10-5} (\frac{2}{2x^{2}})^{5} $$
    $$ \Rightarrow \dfrac{10\times 9\times 8\times 7\times 6}{5\times 4\times 5\times 2\times 1} (\dfrac{2x^{2}}{3^{8}})^{5} (\dfrac{2}{2x^{2}})^{5} $$
    $$ \Rightarrow 4\times 63\times 2 (1) $$
    $$ \Rightarrow 252\times 1 $$
    $$ \Rightarrow 252 $$ 
    (Option B)

  • Question 2
    1 / -0
    The sum of rational term in the expansion of $${(3^{\frac{1}{5}}+2^{\frac{1}{3}})}^{15}$$ is
    Solution

    Given that ,

    $${{\left( {{3}^{\frac{1}{5}}}+{{2}^{\frac{1}{3}}} \right)}^{15}}$$


    General term is

     $$ {{t}_{r+1}}{{=}^{15}}{{C}_{r}}{{\left( {{3}^{\frac{1}{5}}} \right)}^{15-r}}{{\left( {{2}^{\frac{1}{3}}} \right)}^{r}} $$

     $$ {{=}^{15}}{{C}_{r}}{{.3}^{\frac{15-r}{5}}}{{.2}^{\frac{r}{3}}} $$


    For general term r=0,5

    $${{t}_{0+1}}{{=}^{15}}{{C}_{0}}{{.3}^{3}}=27$$

    $${{t}_{15+1}}={{t}_{16}}{{=}^{15}}{{C}_{15}}{{3}^{0}}.$$$${{2}^{5}}$$ =32


    Hence, this is the required value = $$27+32 =59$$

  • Question 3
    1 / -0
    The value of $$\displaystyle\sum^{10}_{r=0}$$ $$^{20}C_r$$ is equal to?
    Solution
    $$\begin{array}{l} \sum _{ r=0 }^{ 10 }{ { \, ^{ 20 } }{ C_{ r } } } =\, { \, ^{ 20 } }{ C_{ 0 } }+\, { \, ^{ 20 } }{ C_{ 1 } }........{ \, ^{ 20 } }{ C_{ r } }={ 2^{ 20 } } \\ \left( { ^{ 20 }{ C_{ 0 } }{ +^{ 20 } }{ C_{ 1 } }{ { .... }^{ 20 } }{ C_{ 10 } } } \right) +\left( { ^{ 20 }{ C_{ 11 } }{ { ...... }^{ 20 } }{ C_{ 20 } } } \right) ={ 2^{ 20 } } \\ \left( { ^{ 20 }{ C_{ 0 } }{ { ...... }^{ 20 } }{ C_{ 10 } } } \right) +\left( { ^{ 20 }{ C_{ 9 } }{ +^{ 20 } }{ C_{ 8 } }{ { ..... }^{ 20 } }{ C_{ 0 } } } \right) ={ 2^{ 20 } } \\ =2\left( { ^{ 20 }{ C_{ 0 } }{ { ........ }^{ 20 } }{ C_{ 10 } } } \right) ={ 2^{ 20 } }{ +^{ 20 } }{ C_{ 10 } } \\ { =^{ 20 } }{ C_{ 0 } }+{ ....^{ 20 } }{ C_{ 10 } }={ 2^{ 19 } }+{ \frac { 1 }{ 2 } ^{ 20 } }{ C_{ 10 } } \end{array}$$
  • Question 4
    1 / -0
    Coefficient of $$x^{2}$$ in the expansion of $$\left ( x-\frac{1}{2x} \right )$$is?
    Solution

    Consider the given function:

      $$ Cofficient\,\,of\,{{x}^{2}}\,in\,\,the\,\,\exp ansion\,\,of\,\,(x-\dfrac{1}{2x}) $$

     $$ =let\,\,the\,\,terms\,{{\,}^{9}}{{C}_{r}}{{(x)}^{9-r}}{{(\dfrac{1}{2x})}^{r}} $$

     $$ {{(x)}^{9-r}}{{({{x}^{-1}})}^{r}}={{x}^{2}} $$

     $$ \,\,\,\,\,\,\,\,\,\,\,\,\,{{x}^{9-r-r}}={{x}^{2}} $$

     $$ \,\,\,\,\,\,\,\,\,\,\,\,\,\,{{x}^{9-2r}}={{x}^{2}} $$

     $$ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2r=7 $$

     $$ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,r=\dfrac{2}{7} $$

    Hence this is the answer.

  • Question 5
    1 / -0
    In the binomial expansion of $$(a-b)^{n}, n\ge 5$$, the sum of the $$5^{th}$$ and $$6^{th}$$ terms is zero, then $$a/b$$ is equals:
    Solution
    Acc. to Question
    $$^{m}C_{4} a^{n-4}(-b)^{4}+ ^{n}C_{5} a^{n-5}(-b)^{5}=0$$
    solving we get
    $$a/b =\dfrac {n-4}{5}$$

  • Question 6
    1 / -0
    If $$x^2+7ax+40$$ and $$x^2+2ax-60$$ have a common factor , then find the value of a,
    Solution
    $$x^{2}+7 a x+40 \text { and } x^{2}+2 a x-60 \text { have a } \\$$
    $$\text { common factor }$$

    $$x^{2}+7 a x+40 \\$$
    $$-x^{2}+2 a x-60 \\$$
    $$----------$$
     $$5 a x+100$$

    $$\text { Therefore, } a x=-20 \text { , Put the value in } \\$$
    $$\text { above equations } \\$$

    $$x^{2}+ 7(-20)+40=0 \\$$
    $$x =\pm 10$$
    $$\text { Therefore, } a=\mp 2$$
  • Question 7
    1 / -0
    The number of non-zero terms in the expansion of $$(\sqrt{7}+1)^{75}-(\sqrt{7}-1)^{75}$$ is
    Solution
    $$(\sqrt 7+1)^{75}-(\sqrt 7-1)^{75}$$
    $$\Rightarrow \sqrt 7\left(1+\dfrac{1}{\sqrt{7}}\right)^{75}-\sqrt 7\left(1-\dfrac{1}{\sqrt{7}}\right)^{75}$$
    $$\Rightarrow $$ middle term = no of non zero terms=
    $$=36$$
  • Question 8
    1 / -0
    The middle term in the expansion of $${ \left( x-\cfrac { 1 }{ 2x }  \right)  }^{ 10 }$$ is equal to
    Solution
    General term
    $$T_{r+1}={^{10}C_r}x^{10-r}\left(-\dfrac{1}{2x}\right)^r$$
    For middle term, $$r=5$$
    $$T_6={^{10}C_5}x^5\left(\dfrac{-1}{2^5x^5}\right)$$
    $$=-\dfrac{10\times 9\times 8\times 7\times 6}{5\times 4\times 3\times 2\times 2^5}$$
    $$=-\dfrac{3\times 2\times 7\times 3\times 2}{2\times 2\times 2\times 2\times 2}$$
    $$T_6=\dfrac{-63}{8}$$.

  • Question 9
    1 / -0
    The number of rational terms in the expansion of $$\quad { \left( { 3 }^{ \cfrac { 1 }{ 4 }  }+{ 7 }^{ \cfrac { 1 }{ 6 }  } \right)  }^{ 144 }$$ is
    Solution
    $$(3^{1/4}+7^{1/6})^{144}$$
    general term$$={^{144}C_r}3^{\dfrac{1}{4}(144-r)}7^{1/6(r)}$$
    $$={^{144}C_r}3^{36-\dfrac{r}{4}}7^{\dfrac{r}{6}}$$
    For rational terms
    $$r=$$LCM$$(4, 6)=12$$
    $$r=0, 12, 24, 36,.....144$$
    AP$$\rightarrow$$
    $$144=0+(n-1)12$$
    $$n-1=\dfrac{144}{2}=12$$
    $$n=13$$
    $$\therefore$$ $$13$$ rational term.

  • Question 10
    1 / -0
    In the expansion of $$(y^{1/5}+x^{1/10})^{55}$$, the number of terms free of a radical sign is
    Solution
    $$\left(y^{1 / 5}+x^{1 / 10}\right)^{55}$$
    $$T_{r+1}=55C_r\left(y^{1 / 5}\right)^{r}\left(x^{1 / 10}\right)^{55-r}$$
    This will be independent of radicals after making powers of $$x, y$$ integers 
    So $$\frac{r}{5}$$ and $$\frac{r}{10}$$should be integers 
    $$\therefore  r=0,10,20,30,40,50$$
    6 terms will be frel of radicals.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now