Self Studies

Binomial Theorem Test - 46

Result Self Studies

Binomial Theorem Test - 46
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The ratio of  coefficient  of $$x^{3}andx^{4}$$ in expansion $$(1+x)^{12}$$is:
    Solution
    $${\left( 1 + x \right)}^{12}$$
    As we know general term in the expansion $${\left( a + b \right)}^{n}$$ is given as-
    $${T}_{r+1} = {^{n}{C}_{r}} {\left( a \right)}^{n-r} {\left( b \right)}^{r}$$
    For expansion $${\left( 1 + x \right)}^{12}$$,
    $$a = 1$$
    $$b = x$$
    $$n = 12$$
    Therefore,
    $${T}_{r+1} = {^{12}{C}_{r}} {\left( 1 \right)}^{12 - r} {\left( x \right)}^{r}$$
    For coefficient of $${x}^{3}$$-
    $$r = 3$$
    Therefore,
    $${T}_{3+1} = {^{12}{C}_{3}} {\left( 1 \right)}^{12 - 3} {\left( x \right)}^{3}$$
    As we know that,
    $${^{n}{C}_{r}} = \cfrac{n!}{r! \left( n - r \right)!}$$
    $$\therefore {T}_{4} = 220 {x}^{3} ..... \left( 1 \right)$$
    Similaraly,
    For coefficient of $${x}^{4}$$
    $$r = 4$$
    Therefore,
    $${T}_{4+1} = {^{12}{C}_{4}} {\left( 1 \right)}^{12-4} {\left( x \right)}^{4}$$
    $$\Rightarrow {T}_{5} = 495 {x}^{4} ..... \left( 2 \right)$$
    From $${eq}^{n} \left( 1 \right) \& \left( 2 \right)$$, we have
    $$\cfrac{\text{Coefficient of } {x}^{3}}{\text{Coefficient of } {x}^{4}} = \cfrac{220}{495} = \cfrac{4}{9}$$
    Hence the ratio of coefficient of $${x}^{3}$$ and $${x}^{4}$$ is $$\cfrac{4}{9}$$.
    Hence the correct answer is $$\left( A \right) \cfrac{4}{9}$$.
  • Question 2
    1 / -0
    The first $$3$$ terms in the expansion of $$(1+ax)^{n}(n\neq 0)$$ are $$1, 6x$$ and $$16x^{2}$$. Then the value of $$a$$ and $$n$$ are respectively 
    Solution
    $$(1+ax)^n={^{n}C_o1}+{^{n}C_1}ax+{^{n}C_2}(ax)^2$$
    $$\therefore {^{n}C_1}(ax)=6x$$
    $$\therefore {^{n}C_2}(ax)^2=16x^2$$
    $$\therefore \dfrac{n!}{(n-1)!}\times a=6$$
    $$\therefore xa=6$$
    $$\therefore \dfrac{n!a^2}{(n-2)!2!}=16$$
    $$\therefore (n)(n-1)a^2=32$$
    $$\therefore \dfrac{1}{(n-1)(a)}=\dfrac{3}{16}$$
    $$\therefore \dfrac{1}{na-a}=\dfrac{3}{16}$$
    $$\therefore 6-a=\dfrac{16}{3}$$
    $$\therefore a=\dfrac{6-16}{3}=\dfrac{2}{3}$$
    $$\therefore x=\dfrac{6}{2}\times 3=9$$
    $$\therefore x=9, a=\dfrac{2}{3}$$.

  • Question 3
    1 / -0
    For $$r=0,1,2,,....10$$ let $${A}_{r},{B}_{r}$$ and $${C}_{r}$$ denote respectively the coefficient of $${x}^{r}$$ in the expansions of $${(1+x)}^{10},{(1+x)}^{20}$$ and $${(1+x)}^{30}$$. Then $$\sum _{ r=1 }^{ 10 }{ { A }_{ r }\left( { B }_{ 10 }{ B }_{ r }-{ C }_{ 10 }{ A }_{ r } \right)  } $$ is equal to
    Solution
    $$A_{r}=$$ Coefficient of $$x^{r}$$ in $$(1+r)^{10}=10\ C_{r}$$
    $$B_{r}=$$ Coefficient of $$x^{r}$$ in $$(1+r)^{20}=20\ C_{r}$$
    $$C_{r}=$$ Coefficient of $$x^{r}$$ in $$(1+r)^{30}=30\ C_{r}$$
    $$\displaystyle\sum_{r=1}^{10}Ar (B_{10}B_{r}-C_{10}A_{r})=\sum_{r=1}^{10}A_{r}B_{10}B_{r}-\sum_{r=1}^{10}A_{r}C_{10}A_{r}$$
    $$=\displaystyle\sum_{r=1}^{10} \_{}^{10}C_{r} \_{}^{20}C_{10} \_{}^{20}C_{r}-\sum_{r=1}^{10} \_{}^{10}C_{r} \_{}^{30}C_{10} \_{}^{10}C_{r}$$
    $$=\displaystyle\sum_{r=1}^{10} \_{}^{10}C_{r} \_{}^{20}C_{10} \_{}^{20}C_{r}-\sum_{r=1}^{10} \_{}^{10}C_{r} \_{}^{30}C_{10} \_{}^{10}C_{r}$$
    $$= \_{}^{20}C_{10}\displaystyle\sum_{r=1}^{10} \_{}^{10}C_{10-r} \_{}^{20}C_{r}- \_{}^{30}C_{10}\sum_{r=1}^{10} \_{}^{10}C_{10-r} \_{}^{10}C_{r}$$
    $$=_{}^{20}C_{10}\left(_{}^{30}C_{10}-1\right)-_{}^{30}C_{10}\left(_{}^{20}C_{10}-1\right)$$
    $$=_{}^{30}C_{10}-_{}^{20}C_{10}=C_{10}-B_{10}$$
    $$C_{10}-B_{10}$$



  • Question 4
    1 / -0
    The numerical value of middle terms in $${ \left( 1-\cfrac { 1 }{ x }  \right)  }^{ n }{(1-x)}^{n}$$ is
    Solution
    $$(1-\dfrac{1}{x})^{n}(1-x)^{n}$$

    $$=\dfrac{(x-1)^{n}}{x^{n}}(1-x)^{n}$$

    $$=\dfrac{(-1)^{n}}{x^{n}}(1-x)^{2n}$$

    middle term = $$T_{n+1}=\dfrac{(-1)^{n}}{x^{n}}.^{2n}C_{n}(1)^{2n-n}(-x)^{n}$$

    $$=\dfrac{(-1)^{n}}{x^{n}}.^{2n}C_{n}.1.(-1)^{n}.x^{n}$$

    middle term = $$(-1)^{2n}.^{2n}C_{n}$$
  • Question 5
    1 / -0
    The value of
    $$\left( { _{  }^{ 7 }{ C } }_{ 0 }+{ _{  }^{ 7 }{ C } }_{ 1 } \right) +\left( { _{  }^{ 7 }{ C } }_{ 1 }+{ _{  }^{ 7 }{ C } }_{ 2 } \right) +.....\left( { _{  }^{ 7 }{ C } }_{ 6 }+{ _{  }^{ 7 }{ C } }_{ 7 } \right) $$ is
    Solution
    $$(^{7}C_{0}+^{7}C_{1}+...^{7}C_{6})+(^{7}C_{1}+^{7}C_{2}+...^{7}C_{7})$$
    $$(2^{7}-^{7}C_{7})+(2^{7}-^{7}C_{0})$$
    $$(2^{7}-1)+(2^{7}-1)$$
    $$2.2^{7}-2$$
    $$2^{8}-2$$

  • Question 6
    1 / -0
    The $$r$$th term of series $$2\dfrac{1}{2} + 1\dfrac{7}{{13}} + 1\dfrac{1}{9} + \dfrac{{20}}{{23}} + .....$$ is
    Solution

  • Question 7
    1 / -0
    If $$r$$th term is middle term in $${ \left( { x }^{ 2 }-\cfrac { 1 }{ 2x }  \right)  }^{ 20 }$$ then $$(r+3)$$th term is:
  • Question 8
    1 / -0
    If the rth term in the expansion of $${\left( {{x \over 3} - {2 \over {{x^2}}}} \right)^{10}}$$ contains $${x^4}$$ then r is equal to 
    Solution

  • Question 9
    1 / -0
    If the constant term in the expansion of $$\left(x^{2}-\dfrac{1}{x}\right)^{n}$$ is $$15$$ then the value of $$n$$ is
    Solution

  • Question 10
    1 / -0
    If $$(1-x-x^2)^{20}$$ = $$\sum _{ r=0 }^{ 40 }{ a_4,x^x },$$ then 
    $$a_1+3a_3+5a_5+........+39a_{39}=$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now